ВОЗМОЖНЫЕ МЕХАНИЗМЫ ВЛИЯНИЯ ПАТОЛОГИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ НА ТЕЧЕНИЕ БРОНХИАЛЬНОЙ АСТМЫ

ИРИНА АЛЕКСАНДРОВНА КАМАЕВА, ассистент кафедры общей врачебной практики (семейной медицины)
ГБОУ ВПО СПбГМУ им. акад. И.П. Павлова Минздравсоцразвития, тел. (812)347-56-37, e-mail: kkami@inbox.ru **НАТАЛИЯ ЛЕОНИДОВНА ШАПОРОВА**, докт. мед. наук, профессор, зав. кафедрой общей врачебной практики (семейной медицины) ГБОУ ВПО СПбГМУ им. акад. И.П. Павлова Минздравсоцразвития, тел. (812)347-56-37, e-mail: shapnl@mail.ru

Реферат. Для выявления механизмов влияния патологии щитовидной железы на течение бронхиальной астмы (БА) обследованы 60 пациентов в 5 равных группах: с БА, с гипотиреозом, с тиреотоксикозом, с БА и гипотиреозом, с БА и тиреотоксикозом. Определялись уровни сывороточных IgE и IgG, выполнена спирометрия. Между группами БА+гипотиреоз и БА выявлены различия: в частоте обострений БА [(6,2±0,3) раза в год; vs (4,5±0,6) раза в год; p=0,04]; длительности ремиссии БА [(8,6±0,9) нед; vs (12,1±0,8) нед; p=0,02]; по MOC $_{50}$ (48,91±3,02; vs 60,62±2,53; p=0,04) и MOC $_{70}$ (35,24±1,78; vs 48,74±1,78; p=0,03). Между группами БА+тиреотоксикоз и БА — различия в длительности ремиссии БА [(9,3±0,4) нед; vs (12,1±0,8) нед; p=0,03]; концентраций IgE в сыворотке (266,7±17,3; vs 159,4±3,8; p=0,01). Возможный механизм ухудшения БА при тиреотоксикозе — избыточная активация Th_2 -зависимых реакций, а при гипотиреозе — микседема.

Ключевые слова: бронхиальная астма, гипотиреоз, тиреотоксикоз.

POSSIBLE MECHANISMS OF THYROID GLAND PATHOLOGY INFLUENCE ON BRONCHIAL ASTHMA COURSE

IRINA A. KAMAEVA, MD, assistant professor at General Practice Department of St. Petersburg Pavlov State Medical University, e-mail: kkami@inbox.ru

NATALIA L. SHAPOROVA, MD, PhD, DSc, professor, head of the General Practice Department of St. Petersburg Pavlov State Medical University, e-mail: shapnl@mail.ru

Abstract. To reveal possible mechanisms of thyroid gland pathology influence on bronchial asthma (BA) course 60 patients have been examined in 5 equal groups: BA; hypothyroidism; hyperthyroidism; BA + hypothyroidism; BA+ hypothyroidism. Serum IgE and IgG levels were assessed. Spirometry was performed. Between BA + hypothyroidism and BA groups differences have been revealed in: asthma attack frequency $(6,2\pm0,3, vs. 4,5\pm0,6; p=0,04)$; BA remission duration $[(8,6\pm0,9)$ weeks, vs. $(12,1\pm0,8)$ weeks; p=0,02]; FEF₅₀ $(48,91\pm3,02, vs. 60,62\pm2,53; p=0,04)$ and FEF₇₅ $(35,24\pm1,78, vs. 48,74\pm1,78; p=0,03)$. Between BA+ hyperthyroidism and BA groups have been revealed differences: in BA remission duration $[(9,3\pm0,4)$ weeks, vs. $(12,1\pm0,8)$ weeks; p=0,03]; in serum IgE levels $(266,7\pm17,3, vs. 159,4\pm3,8; p=0,01)$. The possible asthma worsening mechanism in BA+ hyperthyroidism group concerns with Th₂ excessive stimulation; in BA+hypothyroidism group — concerns with mixedema.

Key words: bronchial asthma, hypothyroidism, hyperthyroidism.

Ведение. Распространенность бронхиальной астмы (БА) колеблется в широких пределах от 1% в Нигерии до 12,2% в Новой Зеландии. И по данным современных крупных эпидемиологических исследований, распространенность БА в отдельных странах увеличивается. Так, например, в США с 1960 г. количество больных, страдающих БА, возросло на 4 млн, в России с 1997 по 2001 г. этот показатель увеличился на 30% [4].

По мере перехода пациентов из одной возрастной группы в другую к клинической картине БА присоединяются симптомы других хронических заболеваний. Сочетание нескольких заболеваний, с одной стороны, видоизменяет и утяжеляет клинику самой БА, а с другой — затрудняет диагностику и лечение как БА, так и сопутствующей патологии.

Кроме того, влияние отдельных болезней на течение БА еще не до конца изучено. В частности, это касается патологии щитовидной железы.

Ранее это было обусловлено редкой встречаемостью бронхиальной астмы и патологии щитовидной железы у одного и того же пациента. Согласно работам G.A. Settipane [9] et al. БА и тиреотоксикоз совместно встречаются в одном из 300 случаев зарегистрированной астмы. Однако сочетание этих патологий гораздо чаще встречается в клинической практике. Кроме того, в настоящее время эндокринологи отмечают увеличение распространенности аутоиммунных заболеваний щитовидной железы. Так, по данным C.G Roberts [8], частота гипотиреоза в популяции составляет 2%, а среди женщин 50-летнего возраста достигает 12%.

Имеющиеся к настоящему времени литературные данные по взаимовлиянию БА и аутоиммунных заболеваний щитовидной железы достаточно противоречивы. Поэтому *цель* данной работы — выявить возможные механизмы влияния патологии щитовидной железы на течение БА.

Материал и методы. Было обследовано 60 пациентов. Все пациенты распределены на 5 групп:

- 1. Пациенты с бронхиальной астмой (БА) без патологии щитовидной железы (*n*=12).
- 2. Пациенты с аутоиммунными заболеваниями щитовидной железы, сопровождающимися синдромом гипотиреоза, не страдающие БА (*n*=12).
- 3. Пациенты с аутоиммунными заболеваниями щитовидной железы, сопровождающимися синдромом тиреотоксикоза, не страдающие БА (*n*=12).
- 4. Пациенты с БА и аутоиммунными заболеваниями щитовидной железы, сопровождающимися синдромом гипотиреоза (*n*=12).
- 5. Пациенты с БА и аутоиммунными заболеваниями щитовидной железы, сопровождающимися синдромом тиреотоксикоза (*n*=12).

Характеристика групп представлена в табл. 1.

Группа	n	Средний возраст, лет	Соотношение по полу, %	
1. БА	12	45,1±3,1	Муж. — 41,7 Жен. — 68,3	
2. Гипотиреоз	12	60,8±1,5	Муж. — 8,3 Жен. — 91,7	
3. Тиреотоксикоз	12	43,6±3,6	Муж. — 8,3 Жен. — 91,7	
4. БА+гипотиреоз	12	47,2±7,9	Муж. — 8,3 Жен. — 91,7	
5. БА+тиреотоксикоз	12	53,3±3,3	Муж. — 8,3 Жен. — 91,7	

У всех пациентов с БА (n=36, группы 1, 4, 5), включенных в данное исследование, была БА смешанного генеза (с аллергическим и инфекционно-зависимым, нервно-психическим патогенетическими вариантами) средней степени тяжести.

Диагностика формы и тяжести течения БА осуществлялась на основании международных согласительных документов (GINA, 2006), а также классификации клинико-патогенетических вариантов А.Д. Адо и П.К. Булатова (1969), дополненной Г.Б. Федосеевым (1984).

Отличия групп по возрасту были прогнозируемыми в связи с большей частотой встречаемости гипотиреоза в старшей возрастной группе.

Пациенты с БА получали базисную терапию ингаляционными глюкокортикостероидами в средней дозе в соответствии с международными стандартами (GINA, 2006). Среднесуточная дозировка (по данным за последние 3 мес) не превышала 1000 мкг/сут в пересчете на беклометазон дипропионат.

Пациенты с патологией щитовидной железы наблюдались в эндокринологическом отделении кафедры факультетской терапии СПбГМУ им. акад. И.П. Павлова.

У всех пациентов с недостаточностью функции щитовидной железы (n=24, группы 2, 4) диагностирован аутоиммунный тиреоидит, гипотиреоз. Пациенты получали гормональную заместительную терапию L-тироксином в средней дозе 75 мкг/сут.

Среди пациентов с гиперфункцией щитовидной железы (n=24, группы 3, 5) у 1 пациента (4,17%) диагностирован кордаронассоциированный тиреотоксикоз, у 1пациентки (4,17%) диагностирован узловой токсический зоб. Всем остальным пациентам (91,7%) диагностирована болезнь Грейвса, тиреотоксикоз. Пациенты получали индивидуально подобранную эндокринологом дозу мерказолила.

Помимо детального сбора анамнестических данных и объективного осмотра пациентов, всем пациентам выполнялось иммунологическое исследование крови — определение концентрации общего IgE, IgG и оценка функции внешнего дыхания.

Определение концентрации IgG и общего IgE в сыворотке крови пациентов осуществлялось с помощью «набора реагентов для иммуноферментного определения иммуноглобулина G и общего иммуноглобулина E в сыворотке и плазме крови» (производитель ООО «Хема-Медика»). Всем пациентам определение уровня IgG и общего IgE в сыворотке крови проводилось дважды: пациентам с изолированной БА в фазу обострения (Визит 1) и ремиссии

заболевания (Визит 2); пациентам с изолированной патологией щитовидной железы и пациентам с сочетанной патологией до (Визит 1) и после (Визит 2) коррекции тиреоидного статуса.

Показатели ФВД определяли методом спирографии с регистрацией петли «поток-объем». Регистрация проводилась на приборе SPIROSIFT 3000 фирмы Fukuda Denshi (Япония).

У всех обследованных регистрация показателей функции внешнего дыхания проводилась до и после стандартной пробы с β_2 -адреномиметиком (фенотеролом) дважды в ходе работы: пациентам с изолированной БА в фазу обострения и ремиссии заболевания; пациентам с изолированной патологией щитовидной железы и пациентам с сочетанной патологией до и после коррекции тиреоидного статуса. Проба состояла из ингаляционного введения с помощью дозированного ингалятора 200 мкг фенотерола.

Анализировались следующие параметры, полученные при регистрации: ЖЕЛ (жизненная емкость легких), ОФВ $_1$ (объем форсированного выдоха за первую секунду), ФЖЕЛ (форсированная жизненная емкость легких), VE $_{\rm max}$ (максимальная объемная скорость экспираторного потока при выдохе 100% ФЖЕЛ), МОС $_{50}$ —VE $_{50}$ (мгновенная максимальная скорость при выдохе 50% ФЖЕЛ), МОС $_{75}$ —VE $_{75}$ (мгновенная максимальная скорость при выдохе 75% ФЖЕЛ). Исследуемые параметры оценивались как в абсолютных значениях, так и в процентах к должным величинам по Р.Ф. Клементу и соавт. (1986).

Статистические данные для количественных переменных приведены как среднее ± стандартное отклонение, если не указано иное. Различия средних оценивали с помощью парного критерия Стьюдента или его непараметрического аналога — критерия знаковых рангов Уилкоксона для количественных показателей и считали статистически значимыми при p<0.05.

Результаты и их обсуждение. Анализ клинических особенностей БА у пациентов с патологией щитовидной железы выявил следующее.

Присоединение тиреотоксикоза к БА у большинства пациентов (58,3%) приводило к учащению эпизодов затруднения дыхания, чувства нехватки воздуха, неполностью купирующихся приемом β_2 -адреномиметика. При присоединении гипотиреоза к БА у 41,7% пациентов ведущей жалобой являлся малопродуктивный кашель, не связанный с контактом с причинно-значимыми аллергенами. Надо отметить, что у трети пациентов в группе гипотиреоза без со-

путствующей бронхолегочной патологии кашель также являлся частой жалобой.

Среди провоцирующих факторов обострения БА у пациентов с тиреотоксикозом ведущими были нервнопсихическая нагрузка и провокация аллергенами, в то время как при комбинации БА с гипотиреозом — вирусные инфекции.

Анализ частоты обострений БА при сочетании с патологией щитовидной железы (анамнестические данные за предшествующие 12 мес) показал, что присоединение гипотиреоза к бронхиальной астме увеличивает частоту обострений БА [(6,2±0,3) раза в год по сравнению с (4,5±0,6) раза в год; p=0,04]. Имеющие различия в частоте обострений БА между группой БА и БА+тиреотоксикоз статистически недостоверны [(4,5±0,6) раза в год по сравнению с (5,1±0,4) раза в год; p=0,06].

При оценке длительности ремиссии БА оказалось, что появление сопутствующей патологии щитовидной железы как гипотиреоза, так и тиреотоксикоза статистически значимо укорачивало длительность ремиссии БА [(8,6 \pm 0,9) нед в группе БА+гипотиреоз и (9,3 \pm 0,4) нед в группе БА+тиреотоксикоз по сравнению с (12,1 \pm 0,8) нед в группе БА; p=0,02 и p=0,03 соответственно].

Определение сывороточных концентраций IgG не выявило значимых различий данного показателя между обследованными группами (табл. 2).

При определении концентрации общего IgE в сыворотке крови максимально высокие значения IgE были получены в группе БА+тиреотоксикоз по сравнению с группой изолированной БА и группой БА+гипотиреоз $(266,7\pm17,3;\ 159,4\pm3,8\ u\ 122,5\pm9,8\ p=0,01\ u\ p=0,01\ соответственно) <math>(maбn.\ 3)$.

При проведении функции внешнего дыхания в обследованных группах не было выявлено статистически значимых различий показателя $O\Phi B_1$. Однако между группами БА и БА+гипотиреоз обнаружены достоверные отличия потоковых показателей, MOC_{50} , MOC_{70} .

Пациенты из группы БА+гипотиреоз по сравнению с группой изолированной БА продемонстрировали более низкие значения MOC_{50} (48,91±3,02 в сравнении с 60,62±2,53; p=0,04) (maбn. 4) и MOC_{75} (35,24±1,78 в сравнении с 48,74±1,78; p=0,03) (maбn. 5).

Наши результаты показали, что присоединение патологии щитовидной железы к бронхиальной астме (как гипотиреоза, так и тиреотоксикоза) ухудшает ее течение, увеличивая частоту обострений и уменьшая длительность ремиссии БА. Это согласуется с данными отечественных исследователей. О.Ю. Ильина [1] в своей работе отметила учащение приступов удушья при действии неспецифических раздражителей, чувства нехватки воздуха, нарастание психовегетативных жалоб у пациентов с БА

Таблица 2

Концентрация IgG сыворотки крови в обследованных группах

IgG	БА (группа 1)	Гипотиреоз (группа 2)	Тиреотоксикоз (группа 3)	БА+гипотиреоз (группа 4)	БА+тиреотоксикоз (группа 5)
Визит 1	12,3±1,21	14,99±2,50	15,45±0,91	15,10±1,42	9,89±1,47
Визит 2	11,7±1,62	13,8±1,57	14,75±1,84	10,92±2,03	12,17±1,15

Таблица 3

Концентрация IgE в сыворотки крови

IgG	БА (группа 1)	Гипотиреоз (группа 2)	Тиреотоксикоз (группа 3)	БА+гипотиреоз (группа 4)	БА+тиреотоксикоз (группа 5)
Визит 1	159,4±3,8	91,7±4,4	111,7±3,9	122,5±9,8**	266,7±17,3*
Визит 2	139,6±7,4	85,3±3,4	110,2±6,5	110,0±11,5	250,0±13,2

^{*}p=0,01 между группами 5 и 1; **p=0,01 между группами 5 и 4.

Таблица 4

Значение MOC_{50} у исследуемых групп

MOC ₅₀	БА (группа 1)	Гипотиреоз (группа 2)	Тиреотоксикоз (группа 3)	БА+гипотиреоз (группа 4)	БА+тиреотоксикоз (группа 5)
Визит 1	60,62±2,53	78,28±5,71	73,38±5,26	48,91±3,02*	50,54±1,95
Визит 2	73,21±2,12	80,53±4,10	75,25±3,85	70,43±3,01	67,92±1,23

^{*}p=0,04 между группами 4 и 1.

Таблица 5

Значение МОС₇₅ у исследуемых групп

MOC ₇₅	БА (группа 1)	Гипотиреоз (группа 2)	Тиреотоксикоз (группа 3)	БА+гипотиреоз (группа 4)	БА+тиреотоксикоз (группа 5)
Визит 1	48,74±1,78	59,53±4,98	57,40±6,12	35,24±1,78*	39,68±2,41
Визит 2	65,81±3,17	63,31±4,52	62,23±3,40	56,31±5,98	61,43±4,05

^{*}p=0,03 между группами 4 и 1.

на фоне тиреотоксикоза, что расценивалось как обострение БА. На фоне гипотиреоза многие авторы также отмечают нестабильный характер течения БА, частые обострения [3, 5], учащение приступов удушья и повышение потребности в β_2 -агноистах короткого действия [2].

Повышение концентрации общего IgE в сыворотке крови в группе больных с тиреотоксикозом (по сравнению с группой гипотиреоза), максимально высокие значения общего IgE в группе больных БА+тиреотоксикоз показывают, что тиреотоксикоз, будучи Th_2 -зависимым заболеванием, присоединяясь к БА, еще в большей степени поляризует иммунный ответ в сторону Th_2 -опосредованных реакций. В пользу данной поляризации свидетельствует избыточная продукция сывороточного IgE. Повышение уровня IgE в сыворотке крови у пациентов с тиреотоксикозом также обнаружено в работах японских исследователей [10, 11].

Возможным механизмом, объясняющим повышение уровня общего IgE в сыворотке крови, является то, что у больных с тиреотоксикозом часть тиростимулирующих антител (синтез которых является ключевым в патогенезе заболевания) может принадлежать не семейству иммуноглобулинов класса G, а семейству иммуноглобулинов класса E [10].

В то же время группа БА+гипотиреоз отличалась существенно более низкими показателями сывороточного IgE по сравнению с группой БА (122,5 \pm 9,8 и 159,4 \pm 3,8 соответственно; p=0,04) и группой БА+тиреотоксикоз (122,5 \pm 9,8 и 266,7 \pm 17,3 соответственно; p=0,01). Из этих показателей следует, что гипотиреоз характеризуется существенно более низкой активностью Th_2 -зависимых иммунологических реакций по сравнению с тиреотоксикозом. Это подтверждается данными исследований итальянских ученых [7], в которых показано, что длительный дефицит тиреоидных гормонов снижает продукцию IgE.

Несмотря на меньшую выраженность иммунологических реакций, клинические наблюдения показывают, что присоединение гипотиреоза к БА в большей степени ухудшает течение БА по сравнению с тиреотоксикозом. Об этом можно судить не только по статистически значимому увеличению частоты обострений БА и укорочению длительности ремиссии, но и по достоверному снижению потоковых показателей MOC_{50} (48,91±3,02 в сравнении с $60,62\pm2,53$; p=0,04) и MOC₇₅ по сравнению с группой изолированной БА (35,24±1,78 в сравнении с $48,74\pm1,78$; p=0,03). По-видимому, ведущим механизмом, обусловливающим снижение потоковых показателей, нарастания бронхиальной обструкции на фоне низкой активности Тh₂-зависимых реакций является отек слизистой оболочки бронхов, обусловленный недостатком гормонов щитовидной железы и развитием микседемы.

Выводы. Патология щитовидной железы (как гипотиреоз, так и тиреотоксикоз) ухудшает течение БА: увеличивает частоту обострений и укорачивает длительность ремиссии БА.

Комбинация БА и тиреотоксикоза характеризуется высокими концентрациями IgE при статистически незначимом влиянии на потоковые показатели ФВД. Возможным механизмом ухудшения течения БА при тиреотоксикозе является выраженная ак-

тивность иммунного воспаления с преобладанием Th₂-звена.

Комбинация БА и гипотиреоза характеризуется незначительной активностью Th₂-звена при статистически значимых изменениях потоковых показателей ФВД. Возможным механизмом ухудшения течения БА при гипотиреозе является не активность иммунного воспаления, а отек слизистой оболочки бронхов на фоне недостатка функции щитовидной железы.

ЛИТЕРАТУРА

- Ильина, О.Ю. Особенности развития, клиники и течения бронхиальной астмы в сочетании с патологией щитовидной железы: автореф. дис. ... канд. мед. наук / О.Ю. Ильина. — СПб., 2006. — 11 с.
 - Il'ina, O.Ju. Osobennosti razvitija, kliniki i techenija bronhial'noj astmy v sochetanii s patologiej witovidnoj zhelezy: avtoref. dis. ... kand. med. nauk / O.Ju. Il'ina. —SPb., 2006. 11 s.
- Попова, Н.В. Особенности бронхиальной астмы у больных с первичным гипотиреозом / Н.В. Попова, И.А. Бондарь, Л.М. Куделя // Медицина и образование в Сибири. — 2010. — № 5. — С.89—92.
 - *Popova, N.V.* Osobennosti bronhial'noj astmy u bol'nyh s pervichnym gipotireozom / N.V. Popova, I.A. Bondar', L.M. Kudelja // Medicina i obrazovanie v Sibiri. 2010. № 5. S. 89—92.
- Семенова, Н.В. Клинико-патогенетические аспекты сочетания бронхиальной астмы с аутоимунным тиреоидитом: автореф. дис. ... канд. мед. наук / Н.В. Семенова. М., 1998. 24 с.
 - Semenova, N.V. Kliniko-patogeneticheskie aspekty sochetanija bronhial'noj astmy s autoimunnym tireoiditom: avtoref. dis. ... kand. med. nauk / N.V. Semenova. M., 1998. 24 s.
- Федосеев, Г.Б. Бронхиальная астма / Г.Б. Федосеев, В.И. Трофимов. — СПб.: Нордмедиздат, 2006. — 308 с. Fedoseev, G.B. Bronhial'naja astma / G.B. Fedoseev, V.I. Trofimov. — SPb.: Nordmedizdat, 2006. — 308 s.
- 5. *Шубина*, О.В. Клинико-иммунологические особенности течения бронхиальной астмы в сочетании с гипотиреозом: автореф. дис. ... канд. мед. наук / О.В. Шубина. М., 2010. 14 с.
 - Shubina, O.V. Kliniko-immunologicheskie osobennosti techenija bronhial'noj astmy v sochetanii s gipotireozom: avtoref. dis. ... kand. med. nauk / O.V. Shubina. M., 2010. 14 s.
- Guo, J. Thyroid peroxidase autoantibodies of IgE class in thyroid autoimmunity / J. Guo, B. Rapoport, S.M. McLachlan // Clin. Immunol. Immunopathol. — 1997. — Vol. 82. — P.157—162.
- Manzolli, S. Allergic airway inflammation in hypothyroid rats / S. Manzolli, M.F. Macedo-Soares, E.O. Vianna, P. Sannomiya // J. Allergy. Clin. Immunol. — 1999. — Vol. 104(3), pt. 1. — P.595—600.
- 8. Roberts, C.G. Hyothyroidism / C.G. Roberts, P.W. Landenson // Lancet. 2004. Vol. 363. P.793—803.
- Settipane, G.A. Status asthmaticus associated with hyperthyroidism/G.A. Settipane, M.W. Hamolsky// Engl. Reg. Allergy. Proc. — 1987. — Vol. 8(5). — P.323—326.
- Sato, A. A possible role of immunoglobulin E in patients with hyperthyroid Graves' disease / A. Sato, Y. Takemura, T. Yamada [et al.] // J. Clin. Endocrinol. Metab. 1999. Vol. 84(10). P.3602—3605.
- 11. Yamada, T. An elevation of Serum Immunoglobulin E Provides a New aspect of Hyperthyroid Graves Disease / T. Yamada, A. Sato, I. Komiya [et al.] // The Journal of Clinical Endocrinology & Metabolism. 2000. Vol. 85, № 8. P.2775—2778.