С.А. КАКУНИНА, А.В. РУСАНОВСКАЯ, Д.О. ШКВОРЧЕНКО, Е.В. БЕЛОУСОВА

МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» МЗ РФ, г. Москва

Возможности бимануальной техники 27-29 G витрэктомии в лечении пролиферативной диабетической ретинопатии

УДК 617.735-002-02:616.633.66

Шкворченко Дмитрий Олегович

кандидат медицинских наук, научно-клинический куратор отделения хирургии сетчатки, стекловидного тела и диабета 127486, г. Москва, Бескудниковский бульвар, д. 59а, тел. (499) 488-84-02, e-mail: anna.rusanovskay@gmail.com

Применение бимануальной техники 27-29 gauge витрэктомии при пролиферативной диабетической ретинопатии позволяет хирургу контролировать уровень отсечения новообразованных сосудов, а также предупреждать повреждение петель нативных сосудов сетчатки при удалении фиброваскулярных мембран. Это позволяет избежать интраоперационного кровотечения.

Ключевые слова: 27-gauge витрэктомия, 29-gauge эндоосветители, витреоретинальная хирургия, диабетическая пролиферативная ретинопатия, тракционная отслойка сетчатки.

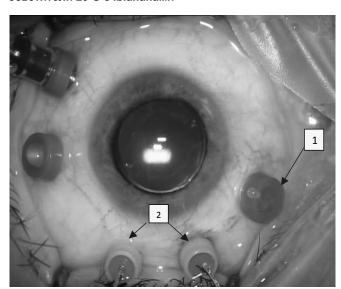
S.A. KAKUNINA, A.V. RUSANOVSKAYA, D.O. SHKVORCHENKO, E.V. BELOUSOVA

IRTC «Eye Microsurgery» named after acad. S.N. Fedorov» MH of RF, Moscow

Possibility of bimanual technology 27-29 G vitrectomy in the treatment of proliferative diabetic retinopathy

The use of bimanual vitrectomy technique 27-29 gauge for proliferative diabetic retinopathy, allows the surgeon to control the level of the cut-off of newly formed vessels, as well as to prevent damage to the hinges of native vessels in the retina when removing fibrovascular membranes. This avoids intraoperative bleeding.

Keywords: 27-gauge vitrectomy, 29-gauge endoillumination, vitreous surgery, diabetic proliferative retinopathy, traction retinal detachment.


ЦВЕТНЫЕ ИЛЛЮСТРАЦИИ К СТАТЬЕ НА СТР. 275

Диабетическая ретинопатия развивается практически у 90% больных сахарным диабетом (СД). Несмотря на современные достижения в лечении СД, диабетическая ретинопатия (ДР) занимает лидирующую позицию среди причин развития слепоты у взрослого населения во всем мире [1]. Оптимальным лечением ДР является стабилизация уровня глюкозы крови, лазерная терапия на этапе непролиферативной ДР при высоком риске пролиферации по классификации ETDRS, а также своевременная витрэктомия при развитии пролиферативной стадии процесса и таких его осложнений, как гемофтальм и тракционная отслойка сетчатки [2]. Основным проявлением пролиферативной диабетической ретинопатии является образование преретинальных фиброваскулярных мембран,

которые вызывают тракционную отслойку сетчатки [3]. На такой стадии развития диабетического процесса показано оперативное вмешательство. Его задачей является деликатное удаление фиброваскулярных мембран с желательно минимальным интраоперационным кровотечением и без разрывов сетчатки в местах ее плотного сращения с мембраной. До настоящего времени данная задача была трудно выполнима в связи с техническим несовершенством существующих до этого систем для витрэктомии. На сегодняшний день общепринятой является 25 G витрэктомия. Имея множество преимуществ перед предшествующими методиками, 25 G витрэктомия ставит перед хирургом ряд вопросов. Один из наиболее важных — послеоперационная гипотония, связанная с

неадекватной адаптацией склеральных проколов. Еще одним актуальным вопросом является то, что во многих случаях инструменты 25 G оказываются недостаточно деликатными при работе на сетчатке. Следствием этого является выраженное интраоперационное кровотечение при сегментации и деламинации фиброваскулярных мембран [4]. На современном этапе развития витреоретинальная хирургия идет по пути уменьшения калибра инструментария и, как следствие, уменьшения хирургической травмы. Доктором Y. Oshima с соавторами был разработан набор инструментов 27-Gauge для проведения витреоретинальных вмешательств [5]. Система для витрэктомии 27 G имеет ряд конструктивных особенностей. В первую очередь это уменьшение калибра инструментов до 0.4 мм. Доктор Y. Oshima совместно с компанией DORC в экспериментальной работе доказал, что 27 G является максимальным диаметром. позволяющим склеральному разрезу самопроизвольно герметично закрыться. На портах 27 G имеется клапанный механизм, работающий по принципу самогерметизации при извлечении хирургических инструментов. Высокоскоростной витреотом 27 G с дистальным расположением аспирационного окна дает возможность работать витреотомом как эндовитреальными ножницами. Применение системы дополнительного освещения 29 G с транссклеральной фиксацией представляет хирургу возможность работать бимануально (рис. 1).

Рисунок 1. Система для витрэктомии 27 G с дополнительными осветителями 29 G, где 1 — порты 27 G с клапанами; 2 осветители 29 G с клапанами

Целью данной работы является оценка возможности и преимуществ техники бимануальной 27-29 G витрэктомии в лечении пролиферативной диабетической ретинопатии.

Материалы и методы

Под наблюдением находились 45 пациентов (45 глаз) с тракционной отслойкой сетчатки, вызванной пролиферативной ДР. Средний возраст пациентов составлял 43,3±4,7 года. В ходе дооперационного обследования проводилась визометрия, тонометрия, периметрия, оптическая биомикроскопия, офтальмоскопия, ультразвуковое обследование (А- и В-сканирование), офтальмометрия, электрофизиологические исследования сетчатки и зрительного нерва. Сроки наблюдения после операции составляли 6 месяцев.

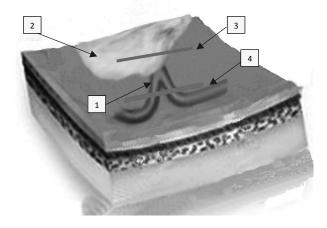
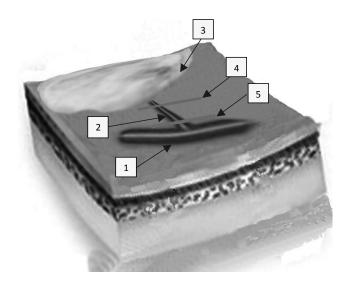

Всем пациентам проводилась трехпортовая 27 G витрэктомия. Для обеспечения дополнительного освещения использовались два ртутных осветителя 29 G «Foton-2», фиксированных транссклерально в 4 мм от лимба. Во всех случаях применялась бимануальная техника удаления фиброваскулярных мембран при помощи витреотома. При удалении фиброваскулярных мембран петли нативных сосудов сетчатки, вытянутые в мембрану не повреждались, а новообразованные сосуды, идущие к мембране, иссекались в месте наименьшего диаметра сечения сосуда. Всем пациентам выполнялась эндолазеркоагуляция сетчатки. В 31 случае (69%) операция завершилась тампонадой газо-воздушной смесью, в 14 случаях (31%) силиконовым маслом вязкостью 1300 сс, через специально разработанную для МНТК «Микрохирургия глаза» компанией DORC канюлю для введения силикона через порт 27 G. Тампонада силиконовым маслом проводилась при наличии разрывов сетчатки и при высоком риске послеоперационного интравитреального кровоизлияния. В остальных случаях предпочтение отдавалось тампонаде газо-воздушной смесью. В послеоперационном периоде всем пациентам проводились стандартные методы обследования.

Таблица 1. Динамика остроты зрения

	Количество пациентов		
Острота зрения	до операции	после операции через 1 мес.	после операции через 6 мес.
Pr. incertae	2	-	_
Pr. certae	5	1	1
0,01	7	6	4
0,05	10	7	3
0,1	14	6	10
0,3	4	15	17
0,5	3	7	8
0,8	-	3	2
Итого	45	45	45


Рисунок 2.

Ход петли сосуда сетчатки в фиброваскулярной мембране, где 1 — петля сосуда сетчатки, вытянутая фиброваскулярной мембраной; 2 — фиброваскулярная эпиретинальная мембрана; 3 — уровень отсечения мембраны, который позволяет избежать кровотечения; 4 — уровень отсечения мембраны, при котором возникает кровотечение

Рисунок 3.

Ход новообразованного сосуда в фиброваскулярной мембране, где 1 — нативный сосуд сетчатки; 2 — новообразованный сосуд; 3 — фиброваскулярная эпиретинальная мембрана; 4 — уровень отсечения сосуда, который позволяет уменьшить кровотечение; 5 — уровень отсечения мембраны, при котором возникает кровотечение

Результаты и обсуждение

Острота зрения после операции соответствовала тяжести диабетической процесса, но во всех случаях была выше, чем до операции. В отдаленном послеоперационном периоде острота зрения оставалась стабильной (табл. 1). Сетчатка прилегла у всех пациентов. Послеоперационной гипотонии не наблюдалось ни в одном случае. Средний уровень внутриглазного давления при пневмотонометрии в первый день после операции составлял 15,3±2,3 мм рт. ст. Интравитреальное послео-

перационное кровоизлияние из новообразованных сосудов наблюдалось у 12 пациентов (26%).

В ходе операции были отмечены следующие особенности: уменьшение объема инфузии и отсутствие перепадов давления во время операции за счет системы клапанов на склеральных портах; уменьшение выраженности интраоперационных эндовитреальных кровоизлияний за счет возможности работы непосредственно с сосудами сетчатки, а именно деликатного обхождения вытянутых петель нативных сосудов сетчатки при удалении фиброваскулярных мембран (рис. 2), а также возможности контроля уровня отсечения новообразованных сосудов (рис. 3), что позволяет уменьшить выраженность кровотечения; за счет адекватной работы клапанной системы 27-Gauge портов не происходит «взбалтывания» крови в витреальной полости, что позволяет сохранить постоянную визуализацию глазного дна во время операции.

Выводы

Применение техники бимануальной 27-29G витрэктомии в лечении пролиферативной диабетической ретинопатии позволяет уменьшить выраженность интраоперационных и послеоперационных осложнений.

ЛИТЕРАТУРА

- 1. Semeraro F., Parrinello G., Cancarini A. et al. Predicting the risk of diabetic retinopathy in type 2 diabetic patients // Journal of Diabetes and its Complications. 2011. Vol. 25, № 9/10. P. 292-297.
- 2. Smiddy W., Flynn H. Vitrectomy in the Management of Diabetic Retinopathy // Survey of Ophthalmology. —1999. Vol. 43. P. 491-507.
- 3. Steinle N.C. J. AmbatiRetinal. Encyclopedia of the Eye. Vasculopathies: Diabetic Retinopathy. 2010. P. 109-117.
- 4. Thompson J. Advantages and Limitations of Small Gauge Vitrectomy // Survey of Ophthalmology. 2011. Vol. 56, № 3/4. P. 162-172.
- 5. Oshima Y., Wakabayashi T., Sato T. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery // Ophthalmology. 2010. Vol. 117. P. 93-102.