СПОРТИВНАЯ МЕДИЦИНА

ВЛИЯНИЕ ТРЕНИРОВКИ АЭРОБНОЙ НАПРАВЛЕННОСТИ НА КОРОНАРНОЕ КРОВООБРАЩЕНИЕ

В.Н. КОЛЯСОВА,

Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина

Аннотация

Abstract

Исследована особенность потребления миокардом кислорода при тренировках, развивающих аэробную производительность организма.

The specificity myocard's using the oxygen during physical training, which develops aerobical industry of the organism, is investigated.

Ключевые слова: коронарное кровообращение, студенты, тренировка аэробной направленности.

При физической нагрузке сердечно-сосудистая система обеспечивает доставку кислорода и субстратов к работающей мышце, поставляет гормоны и удаляет продукты обмена (включая тепло) из мышцы. Система сосудов при этом служит трубопроводом, а сердце — мощным насосом.

Основной причиной, ограничивающей размеры физической работоспособности, является фактор сердечной производительности. Увеличение сердечного выброса происходит при повышении частоты сердечных сокращений (ЧСС) и ударного объема. Когда ЧСС ускоряется более 150 уд./мин, ударный объем начинает заметно снижаться пропорционально ЧСС, что приводит к уменьшению сердечного выброса. Падение сердечного выброса в таких условиях вызывается сердечной недостаточностью, т.е. снижением сократительной способности сердца. Сердечная недостаточность может быть обусловлена анатомическими пороками, но в большей степени метаболическими расстройствами и ишемией миокарда. Сердце извлекает из крови больше кислорода, чем другие органы. Через левое предсердие и левый желудочек проходит в больших количествах высокооксигенированная кровь, но кислород, необходимый для сердечного сокращения, практически не диффундирует сквозь стенку желудочка. Сердце имеет собственную систему кровоснабжения – коронарное кровообращение. В венечных (коронарных) сосудах сердца кровоток происходит преимущественно во время диастолы, так как в этот период сердечная мышца расслаблена и кровь может проходить по сосудам. Во время систолы сокращение желудочков приводит к наружному сдавлению сосудов, что может полностью остановить кровоток в коронарной сосудистой сети.

Факторами, влияющими на кровоток в сердце, являются: физические, нервные и нейрогуморальные, метаболические. Физические факторы включают поддержание кровяного давления и сдавливание венечных сосудов во время сокращения миокарда. Адреналин вызывает некоторое повышение тонуса коронарных сосудов благодаря наличию альфа- и бета-адренорецепторов. Часть симпатических волокон нервов сердца является холинэргической и вызывает вазодилятацию. Но резкое перевозбуждение симпатического отдела при отрицательных эмоциях вызывает спазм коронарных сосудов. Наиболее важными регуляторами коронарной перфузии являются метаболическая саморегуляция и функциональная гиперемия.

Увеличение мощности системы аэробного энергообеспечения миокарда (при тренировке общей выносливости), воздействуя на коронарный кровоток, предупреждает нарушения его метаболизма, снижение сократительной функции и других нарушений, обусловленных перегрузкой сердца.

Потребление кислорода миокардом информативнее всего оценивается по произведению ЧСС на систолическое артериальное давление (САД) – двойному произведению (ДП):

 $Д\Pi = (ЧСС \times CAД \times 10^{-2}).$

26 Спортивная медицина

Это интегральный показатель напряженности функционирования системы кровообращения в целом отражает развиваемое систолическое напряжение, связанное с потреблением О, миокардом. Показатель информативен как в состоянии покоя, так и при тестирующих нагрузках, надежен для диагностики и прогноза степени адаптированности при систематическом применении мышечных нагрузок. При тренировке общей выносливости ЧСС и САД понижаются как в покое, так и при любых видах нагрузки, т.е. повышается резистентность сердца к гипоксии и ишемии вследствие меньшей мобилизации симпатико-адреналовой системы при физической нагрузке. В стандартных условиях одинаковых нагрузок функциональные возможности организма выше у тех лиц, кто имеет меньшую величину ДП. У здоровых лиц при субмаксимальной мощности нагрузки величина ДП равна 319.4 ± 4.4 .

Непосредственное влияние на коронарное кровообращение тренировки аэробной направленности наблюдалось в течение соответствующего этапа констатирующего эксперимента в специальной медицинской группе студентов вуза с использованием модульной технологии кинезиотерапии. Программа физической реабилитации включала в себя четыре модуля, содержание и последовательность которых были основаны на саногенетических механизмах воздействия на следующие приоритетные для кинезиотерапии системы: опорнодвигательный аппарат, кардиореспираторная система (обеспечивающая аэробные способности организма); аппарат центральной нейрогормональной регуляции (обеспечивающий анаболические процессы организма); иммунная система (обеспечивающую защиту организма от чужеродной генетической информации).

В данном случае акцентируется внимание на втором модуле, целью которого являлось воздействие на кардиореспираторную систему (КРС) в целом и на механизмы собственного кровоснабжения сердца, в частности.

Задачи модуля были таковы: тренировка экстракардиальных факторов кровообращения; мобилизация энергетических резервов организма; улучшение функций дыхательной системы; увеличение максимального потребления кислорода. Включает три комплекса лечебно-оздоровительной гимнастики (ЛОГ), соответствующих щадящему, тонизирующему и тренирующему режимам.

Форма (средства) – ациклические упражнения, развивающие общую выносливость. Как вариант возможно использование любых циклических нагрузок, аквааэробики, в тренирующем режиме – интервальной аэробики и др. Основные механизмы лечебного действия – трофический и механизм формирования компенсаций.

Методические особенности первого комплекса ЛОГ, соответствующего **щадящему** режиму воздействия на κ р.с.

1) Длительная подготовительная часть с целью улучшения периферического и коронарного кровообращения.

- 2) В основной части используются упражнения, разгружающие сердечно-сосудистую систему, выполняемые из следующих исходных положений (и. п.): в вертикальном положении туловища физические упражнения с участием плечевого пояса и рук способствуют снижению напряженности в малом круге кровообращения и функций правой половины сердца, а в горизонтальном положении с участием ног в большом круге и функций левой половины сердца. Нагрузка должна быть «рассеянной».
- 3) Соотношение общеразвивающих упражнений (ОРУ) к дыхательным упражнениям (ДУ) 5:1. Для устранения гипоксии тканей применяются ритмичные ДУ с гиперкапническим стимулом задержкой дыхания как на вдохе, так и на выдохе: 2 счета вдох : 2 счета пауза : 2 счета пауза :

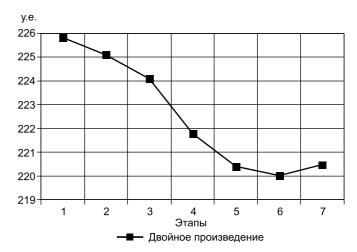
4:4:4:4.

- 4) Физиологическая «кривая» по ЧСС волнообразная многовершинная (обычно таких вершин 3–4).
- 5) Дозировка нагрузки по индивидуальному резерву сердца (ИРС). Интенсивность («пик») нагрузки в этом режиме 30–40% ИРС.
- 6) Показ упражнений, создание благоприятного эмоционального фона (музыкальное сопровождение) без признаков соревновательности для предупреждения выброса адреналина.
- 7) Исключить изометрический (статический) режим работы, так как в миокарде должны преобладать аэробные энергетические реакции.

Методические особенности второго комплекса ЛОГ, соответствующего **тонизирующему** режиму воздействия на КРС:

- 1) Вводную часть проводят в ходьбе, применяя упражнения на осанку и профилактику плоскостопия.
- Воздействие на экстракардиальные факторы кровообращения.
 - 3) Обучение полному дыханию.
- 4) ОРУ выполняются изо всех и. п., допустимо усложнение координации движений, силовой компонент с последующим расслаблением и большая амплитуда движений. Продолжительность урока не менее 40 мин, чтобы успело снизиться до определенных величин содержание углеводов в крови и мышцах, что станет стимулом для включения в процессы энергообеспечения жировой ткани.
- 5) Соотношение ДУ : ОРУ : Р (расслабление) 1 : 4 : 1.
- 6) Физиологическая кривая по пульсу многовершинная с «пиком» нагрузки, соответствующим 50–60% ИРС.
- 7) Длительная заключительная часть не менее 10 мин для дистальных отделов конечностей, с упражнениями в расслаблении мышц и дыхательными упражнениями, для более полной ликвидации ${\rm O_2}$ -долга, вызванного накоплением молочной кислоты и снижением pH в кислую сторону.

Методические особенности третьего комплекса ЛОГ, соответствующего **тренирующему** режиму воздействия на КРС:



- 1) В вводной части добавляется бег (5–10 мин).
- 2) Длительная основная часть, пульсовая кривая 1–2-вершинная, нагрузка 70–80% ИРС.
- 3) Развивающие упражнения должны быть близкими к значениям толерантности (пороговый уровень реагирования), стимулируя развитие функциональных возможностей КРС для тренировки качества общей выносливости.
- 4) Используется частая смена и. п., применяются наклоны вперед, приседания, упражнения на вестибулярную и ортостатическую устойчивость, игровой метод проведения занятий.
- 5) Соотношение ДУ : OPУ 1 : 3. Обучение типам дыхания в зависимости от направления движений грудной клетки:
 - вертикальное (меняется высота грудной клетки);
- сагиттальное (меняются переднезадние размеры грудной клетки);
- фронтальное (меняются боковые размеры грудной клетки).

Продолжительность второго модуля, направленного на тренировку аэробной направленности, составила два месяца в рамках учебной нагрузки 4 часа в неделю. Наряду с другими показателями, характеризующими состояние КРС, ДП определялось после стандартной тестирующей нагрузки в течение 6 этапов.

В результате соответствующего этапа констатирующего эксперимента показатели ДП уменьшились у всех испытуемых, что отражает снижение потребно-

сти миокарда в кислороде при равных нагрузках для обеспечения определенной величины сердечного выброса (см. рисунок).

Динамика показателя «двойное произведение» (ДП)

Вывод

Тренировка аэробной производительности организма приводит к уменьшению кислородных затрат, необходимых для обеспечения сердечного выброса, строго пропорционального возросшему кислородному запросу тканей, и уменьшает повреждающие эффекты ишемии миокарда.

Литература

- 1. Медицинская реабилитация: Руководство для врачей / Под ред. В.А. Епифанова. М.: МЕД прессинформ, 2005. 328 с.
- 2. *Меерсон Ф.З.* Концепция долговременной адаптации. М.: Дело, 1993. 138 с.
- 3. Рафф Г. Секреты физиологии. М.; СПб.: Издательство БИНОМ; Невский диалект, 2001. 448 с.
- 4. Старшинов А.В. Комплексный анализ изменений показателей дыхания, кровообращения и реологии крови и их информативность у лиц с разным уровнем физ.
- работоспособности: Дис. ... канд. биол. наук. Ярославль, 2004. 110 с.
- 5. *Тель Л.З.* Валеология: Учение о здоровье, болезни и выздоровлении. В 3 т. Т. 2. М.: ООО Издательство АСТ; Астрель, 2001. 480 с.
- 6. *Травинская Л.А.* Значение «двойного произведения» для распределения студентов, занимающихся физическим воспитанием, в медицинские группы // Врачебн. контр. за физич. воспит. и исследов. в спорт. медиц. М., 1987. С. 31–32.

