УДК 616.24-002.2:615.235

ВЛИЯНИЕ N-АЦЕТИЛЦИСТЕИНА НА СИСТЕМНОЕ ВОСПАЛЕНИЕ ПРИ ОБОСТРЕНИИ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

 $\underline{\textit{И.Я. Цеймах}^1, \textit{Ю.В. Кореновский}^1, \textit{Г.И. Костюченко}^2, \textit{А.П. Момот}^3, }$ $\underline{\textit{Т.А. Корнилова}^4, \textit{А.И. Алгазин}^1, \textit{Я.Н. Шойхет}^1}$

¹ГБОУ ВПО «Алтайский государственный медицинский университет» Минздравсоцразвития России (г. Барнаул)

²ГУЗ «Алтайская краевая клиническая больница» (г. Барнаул)

³Алтайский филиал Гематологического научного центра (г. Барнаул)

⁴МУЗ «Городская больница № 5» (г. Барнаул)

Анализируются результаты открытого нерандомизированного сравнительного исследования влияния N-ацетилцистеина на механизмы системного воспаления у больных с инфекционно-зависимым обострением хронической обструктивной болезни легких (ХОБЛ). Показателями активности системного воспаления явились повышение содержания С-реактивного белка плазмы, интерлейкина-6, экспрессия матриксной металлопротеиназы-9, находившаяся в обратной корреляционной связи с уровнем С-реактивного протеина. Антиоксидантные эффекты N-ацетилцистеина сопровождались нормализацией показателя интерлейкина-6, повышением содержания матриксной металлопротеиназы-9, снижением содержания D-димеров в периферической крови.

Ключевые слова: N-ацетилцистеин, обострение ХОБЛ, матриксные металлопротеиназы, D-димеры, эндотелин-1.

Цеймах Ирина Яковлевна — кандидат медицинских наук, ассистент кафедры терапии и семейной медицины ФПК и ППС ГБОУ ВПО «Алтайский государственный медицинский университет», факс 8 (3852) 68-50-23, e-mail: irintsei@rambler.ru

Кореновский Юрий Владимирович — кандидат медицинских наук, ассистент кафедры биохимии и клинической лабораторной диагностики ГБОУ ВПО «Алтайский государственный медицинский университет», контактный телефон: 8 (3852) 26-07-02, e-mail: timidin@gmail.com

Костюченко Геннадий Иванович — доктор медицинских наук, профессор, заместитель главного врача по научной работе ГУЗ «Алтайская краевая клиническая больница», тел./факс: 8 (3852) 68-98-56, e-mail: gkostyuchenko@mail.ru

Момот Андрей Павлович – доктор медицинских наук, профессор, директор Алтайского филиала Гематологического научного центра, контактный телефон: 8 (3852) 26-92-87, e-mail: xyzan@yandex.ru

Корнилова Татьяна Александровна — заведующая отделением пульмонологии № 2 МУЗ «Городская больница № 5», факс: 8 (3852) 68-84-38, e-mail: takkorn@rambler.ru

Алгазин Анатолий Иванович — доктор медицинских наук, профессор, заведующий кафедрой терапии и семейной медицины ФПК и ППС ГБОУ ВПО «Алтайский государственный медицинский университет», факс: 8 (3852) 36-60-91, e-mail: rector@agmu.ru

Шойхет Яков Нахманович — доктор медицинских наук, профессор, член-корреспондент РАМН, заведующий кафедрой факультетской хирургии им. И. И. Неймарка с курсом хирургии ФПК и ППС ГБОУ ВПО «Алтайский государственный медицинский университет», тел./факс: (3852) 68-50-23, e-mail: starok100@mail.ru

Введение. Хроническая обструктивная болезнь легких (ХОБЛ) занимает 4–5-е места в мире среди причин смертности в возрастной группе старше 45 лет [3]. По прогнозу экспертов ВОЗ, к 2020 г. она войдет в первую тройку болезней, лидирующих по показателям смертности, обусловливая около 4,7 млн смертей в год. Обострение ХОБЛ является основной причиной госпитализаций и смерти пациентов, характеризуется прогрессированием воспалительных изменений в нижних отделах дыхательных путей и системных проявлений [3, 7, 9]. Протеиназно-ингибиторный дисбаланс и окислительный стресс, развивающиеся при воздействии бактериальных патогенов и курения, рассматриваются исследователями как основные пути прогрессирования деструкции легочной ткани и развития системного воспаления [3, 7].

Важную роль играют также механизмы взаимодействия продуктов окислительного стресса с компонентами протеиназно-ингибиторной системы, в частности, стимуляция образования активных форм из предшественников матриксных металлопротеиназ (ММП) под действием оксидантов, окислительная инактивация α1-протеиназного ингибитора и связанное с этим повышение активности нейтрофильной эластазы, описанные в литературе [5, 6].

Представляется значительной роль несбалансированной продукции протеиназ и их эндогенных регуляторов не только в повреждении соединительнотканных элементов паренхимы легкого, но и в таких механизмах системного воспаления, как нарушение взаимодействия клеток и внеклеточного матрикса, облегчение миграции клеток из сосудов вследствие деструкции коллагена базальной мембраны, регуляция ангиогенеза с помощью индукции выработки эндотелиальных факторов роста, ремоделирование ткани, противоопухолевая защита [3, 10]. Недавние экспериментальные исследования атеросклеротической стабильности бляшки показали, что ММП-3 и ММП-9 оказывают защитное действие, ограничивая рост и увеличивая стабильность бляшки, в то время как ММП-12 способствует расширению поражения и дестабилизации процесса [10]. Эти согласуются с результатами данные клинических исследований системных воспалительных проявлений ХОБЛ, среди которых ведущая роль принадлежит повышению риска и степени тяжести сердечно-сосудистых заболеваний, в том числе фатальных коронарных тромбозов, аритмий [4, 7]. Повышение активности медиаторов системного воспаления сопряжено с активацией гемостатических реакций [1, 2]. Среди причин летальности больных ХОБЛ отмечается высокая частота тромбоэмболии легочной артерии (ТЭЛА), достигающая 50% случаев [8]. Прижизненная диагностика ТЭЛА у пациентов с тяжелым обострением ХОБЛ осуществляется приблизительно в 30 % случаев.

Основными компонентами фармакотерапии обострений ХОБЛ являются бронхолитики, системные и ингаляционные глюкокортикоиды [3, 7, 9]. Однако их клиническая эффективность и влияние на прогноз заболевания, в том числе риски рецидивирующих обострений, укорочения периода последующей ремиссии, остаются недостаточно удовлетворительными. Антиоксидантная терапия в последние годы активно изучается в качестве метода патогенетической терапии ХОБЛ, направленного на уменьшение окислительного стресса и связанных с ним стимуляции выработки медиаторов воспаления и избыточного иммунного ответа на антигенные воздействия [5]. N-ацетилцистеин единственным препаратом с доказанным в клинических исследованиях антиоксидантным действием. Анализ результатов ряда крупных рандомизированных и ретроспективных клинических исследований N-ацетилцистеина показывает, что длительное, не менее двух месяцев, применение препарата в суточных дозах от 400 до 1200 мг в сутки перорально у больных в стабильной стадии ХОБЛ сопровождается уменьшением частоты обострений, повторных госпитализаций, удлинением периодов ремиссии и повышением качества жизни [5]. Однако остаются малоизученными влияние N-ацетилцистенна на механизмы системного воспаления, ассоциированного с XOБЛ, возможности его применения в период обострения ХОБЛ.

Цель исследования. Изучение влияния антиоксидантной терапии с применением N-ацетилцистеина на механизмы системного воспаления и эндотелием опосредованной активации гемостатических реакций у больных с инфекционно-зависимым обострением XOБЛ.

Материалы и методы. В открытое нерандомизированное сравнительное исследование включены 74 больных с клиническими признаками инфекционно-зависимого обострения ХОБЛ — присутствием двух или трех положительных критериев Anthonisen et al., 1987 [7], а также не страдающие ревматологическими и онкологическими заболеваниями. Больные были разделены на 2 группы: 25 пациентов (основная группа) в составе комплексной терапии получали ацетилцистеин парентерально в дозе 600 мг в сутки в течение периода от 7 до 10 дней, остальные 9 человек (группа сравнения) — традиционное лечение обострения ХОБЛ (табл. 1).

Таблица 1

Сравнительная характеристика больных с инфекционно-зависимым обострением **ХОБ**Л

			Группы больных					
Характеристика	Все больные (n = 74)		основная		сравнения			
больных			(n = 25)		(n = 49)			
	абс.		aốc.		абс.			
	число	%	число	%	число	%	p	
Пол:								
Мужской	60	81,1	19	76,0	41	83,7	>0,1	
Женский	14	18,9	6	24,0	8	16,3	>0,1	
Статус курения:								
Некурящие	18	24,3	7	28,0	11	22,4	> 0,1	
Бывшие курильщики	17	23,0	5	20,0	12	24,5	> 0,1	
Курящие	39	52,7	13	52,0	26	53,1	> 0,1	
Тип ХОБЛ:								
Бронхитический	62	83,8	21	84,0	41	83,7	> 0,1	
Эмфизематозный	12	16,2	4	16,0	8	16,3	> 0,1	
Стадии ХОБЛ:								
I, легкая	2	2,7	0	0	2	4,1	> 0,1	
II, среднетяжелая	11	14,9	4	16,0	7	14,3	> 0,1	
III, тяжелая	41	55,4	15	60,0	26	53,1	> 0,1	
IV, крайне тяжелая	20	27,0	6	24,0	14	28,6	> 0,1	
Дыхательная								
недостаточность	108	76,6	17	68,0	90	77,6	> 0,1	
в том числе, по степеням:								
I (SaO ₂ 90-94 %)	85	60,3	16	64,0	69	59,5	> 0,1	
II (SaO ₂ 75–89 %)	21	15,0	1	4,0	19	16,4	< 0,05	
III (SaO ₂ < 75 %)	2	1,4	0	0	2	1,7	> 0,1	
Хроническое легочное сердце	38	51,4	11	44,0	27	55,1	> 0,1	
Сопутствующие заболевания:								
Гипертоническая болезнь	55	74,3	20	80,0	35	71,4	> 0,1	
Хроническая сердечная								
недостаточность	37	50,0	10	40,0	27	55,1	> 0,1	
Стенокардия	13	17,6	3	12,0	10	20,4	> 0,1	
Ожирение	18	24,3	6	24,0	12	24,5	> 0,1	
Сахарный диабет	6	8,1	3	12,0	3	6,1	> 0,1	
Выделение бактериальных								
возбудителей обострения ХОБЛ	38	51,4	14	56,0	24	49,0	> 0,1	

Средний возраст больных в основной группе и группе сравнения составил соответственно $57,3 \pm 2,12$ и $60,4 \pm 1,39$ года (p > 0,1), индекс массы тела был $25,7 \pm 1,19$ и $26,4 \pm$ 0.94 кг/м2 (p > 0.1), индекс курения — $33.7 \pm 4.27 \text{ и} 33.9 \pm 1.99$ пачка-лет соответственно (р > 0,1). Обе группы больных были сопоставимы по полу, тяжести течения ХОБЛ, распространенности хронического легочного сердца и сопутствующих заболеваний системы кровообращения, а также болезней, связанных с нарушением обмена веществ. Изучаемые группы не различались по частоте выделения в мокроте и бронхиальных смывах бактериальных возбудителей обострения ХОБЛ. Частота тяжелой гипоксемии выше в группе сравнения. Пациентам до начала и после терапии была на 12 % выполнялись динамическая оценка функции внешнего дыхания в тесте с бронходилататором при спирографии, анализ дыхательной недостаточности (ДН) с применением пульсоксиметрии и газоанализатора крови ABL5 фирмы Radiometer (Дания). У всех больных в связи с неэффективностью использования дозированных ингаляторов глюкокортикоидов и бронходилататоров проводилась терапия системными глюкокортикоидами (преднизолоном) в соответствии с рекомендациями GOLD, 2009 [7]. Пациенты получали также бронходилататоры короткого действия или бронходилататор длительного действия формотерол, антибактериальную терапию. Критериями достижения общепринятые фазы ремиссии считались критерии клинического излечения. положительная динамика показателей функции внешнего дыхания [3, 7].

В группу контроля вошли 36 человек, не страдающих хроническими заболеваниями органов дыхания, а также ревматологическими и онкологическими заболеваниями, никогда не куривших, со средним возрастом $58,4\pm1,52$ года. Лиц мужского пола было 26 человек (72,2%), женского — 10(27,8%).

Для анализа нарушений протеиназно-ингибиторного баланса в сыворотке крови методом иммуноферментного анализа с применением реагентов фирмы RayBiotech, Inc. (США) определялось содержание матриксных металлопротеиназ ММП-1 и ММП-9, а также их эндогенного регулятора ТИМП-1. При изучении эластолитической активности нейтрофильных лейкоцитов применялась оценка содержания в периферической крови пептида, активирующего нейтрофилы NAP-2 иммуноферментным методом (реагенты фирмы RayBiotech, Inc., США). Последний относится к семейству хемокинов. В экспериментальных исследованиях показано, что его экспрессия на человеческих моноцитах индуцируется при активации их бактериальным эндотоксином [1]. Его физиологическая заключается в стимуляции основная роль высвобождения нейтрофильной эластазы. Ряд других механизмов действия НАП-2 аналогичны интерлейкину-8 (ИЛ-8) и связаны с миграцией лейкоцитов в очаг воспаления. Определялись показатели активности системного воспаления, ассоциированного с ХОБЛ — С-реактивный и ИЛ-6 белок (CPE)методом твердофазного иммуноферментного анализа с использованием тест-системы фирмы Peninsula Laboratoris Inc. (США). Проводилась оценка маркера эндотелиальной дисфункции эндотелин-1 (ЭТ-1) иммуноферментным методом с использованием набора реагентов фирмы Peninsula Laboratoris (США) и плазменного содержания **D**-димеров иммуноферментного анализа с использованием реагентов фирмы Axis-Shield PoC AS (Норвегия).

Статистическая оценка результатов проводилась при нормальном распределении изучаемых параметров с использованием критерия Стьюдента для связанных и несвязанных между собой выборок, а также метода линейного корреляционного анализа. Для оценки показателя D-димеров, не имевшего нормального распределения, использовались критерий Манна-Уитни при сравнении двух несвязанных групп и критерий Вилкоксона при сравнении двух связанных выборок. Критический уровень значимости результатов исследования был p < 0.05.

Результаты и обсуждение. Средняя продолжительность стационарного лечения в группах основной и сравнения была примерно равной и составила соответственно 19.9 ± 1.0 и 19.2 ± 0.93 дней. На фоне проводимой терапии во всех случаях наблюдалось уменьшение выраженности клинических симптомов — кашля, степени гнойности и объема мокроты, одышки по шкале Borg [3], интоксикации, а также нормализация температуры, отмечалось также улучшение показателей оксигенации крови. У ряда пациентов при достижении клинической ремиссии наблюдалось возрастание емкостных и динамических показателей проходимости дыхательных путей при спирографии (ФЖЕЛ, ОФВ1).

При анализе взаимосвязи уровней протеиназ и их эндогенного регулятора ТИМП-1 с другими показателями активности системного воспаления и состояния сосудистоплазменного гемостаза была выявлена обратная корреляционная связь между содержанием в крови ММП-9 и СРБ ($r=0,55;\ p<0,05$), более выраженная в период обострения ($r=0,65;\ p<0,05$). Эта корреляция сохранялась применительно к анализу взаимосвязи отношения ММП-9/ТИМП-1 и СРБ ($r=0,52;\ p<0,05$) (рис. 1).

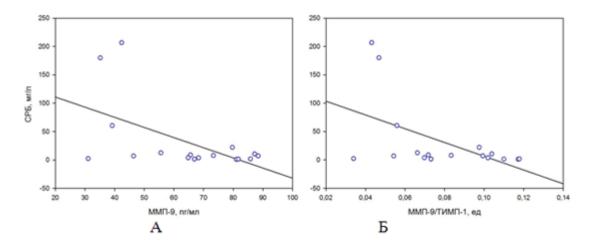


Рис. 1. Анализ корреляционной связи плазменного содержания СРБ и показателей протеиназно-ингибитоного баланса у больных ХОБЛ: А — корреляция показателей СРБ и ММП-9; Б — корреляция показателей СРБ и отношения ММП-9/ТИМП-1

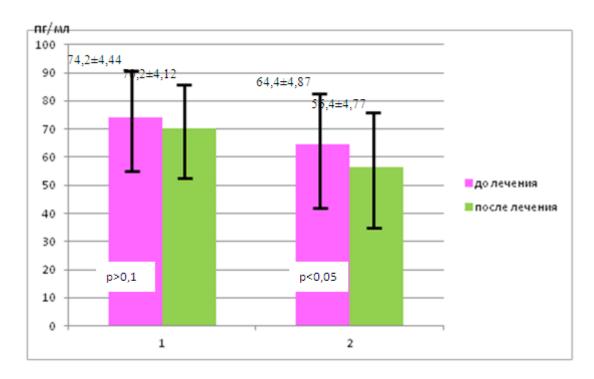
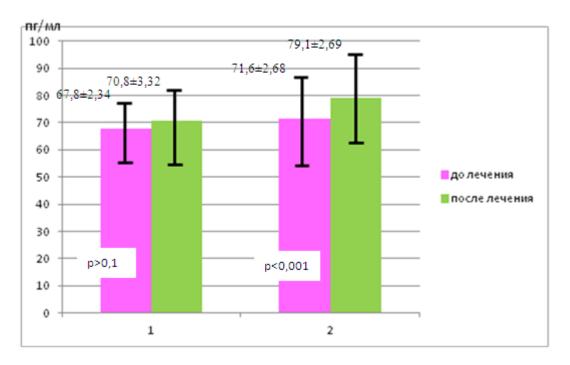

Обострение ХОБЛ сопровождалось сопоставимым повышением уровня матриксной металлопротеиназы ММП-1, а также снижением содержания хемокина НАП-2 в обеих группах больных (табл. 2). Наблюдалось также повышение экспрессии матриксной металлопротеиназы ММП-9 в основной группе пациентов.

Таблица 2 Характеристика показателей протеиназно-ингибиторного баланса и экспрессии хемокина НАП-2 у больных с обострением ХОБЛ

	Контрольная гели группа		Группы больных					
Показатели			основная		сравн	p ₁		
	X	± m	X	± m	X	± m	1	
ММП-1 (пг/мл)	4,1	0,25	5,1	0,32	5,4	0,38	> 0,1	
p			< 0,02		< 0,01		1	
ММП-9 (пг/мл)	56,2	4,13	74,2	4,44	64,4	4,87	> 0,1	
p			< 0,01		> 0,1		1	
ТИМП-1 (пг/мл)	830,8	22,82	779,3	29,41	797,6	24,77	> 0,1	
p			> 0,1		> 0,1		1	
НАП-2 (пг/мл)	84,9	2,02	67,8	2,34	71,6	2,68	> 0,1	
р			< 0,001		< 0,001		1	


Примечания: р — статистическая значимость различий группы больных с контрольной группой, р1 — статистическая значимость различий между группами больных

Терапия N-ацетилцистеином в основной группе пациентов сопровождалась сохраняющимся при достижении ремиссии повышением уровня ММП-9, в то время как в группе сравнения наблюдалось снижение содержания этой металлопротеиназы (рис. 2).

Рис. 2. Динамика содержания матриксной металлопротеиназы-9 у больных с обострением ХОБЛ на фоне терапии N-ацетилцистеином: 1 — основная группа; 2 — группа сравнения

У пациентов основной группы на фоне антиоксидантной терапии сохранялось снижение содержания НАП-2 в периферической крови, в отличии от пациентов группы сравнения, у которых наблюдалось возрастание его содержания (рис. 3).

 $Puc.\ 3.$ Динамика содержания пептида, активирующего нейтрофилы, НАП-2 у больных с обострением ХОБЛ на фоне терапии N-ацетилцистеином: 1 — основная группа; 2 — группа сравнения

Учитывая результаты экспериментальных исследований по изучению роли ММП-9 в механизмах атерогенеза, мы полагаем, что повышенный уровень ММП-9 способствует стабилизации атеросклеротической бляшки и может снижать риск острых сосудистых

осложнений у пациентов с обострением ХОБЛ. Сниженное содержание в крови хемокина НАП-2, по нашему мнению, играет протективную роль, способствуя уменьшению эластолитической активности нейтрофилов. При анализе влияния антиоксидантной терапии на показатели системного воспаления у больных с обострением ХОБЛ наблюдалось сопоставимое повышение показателей системного воспаления СРБ и IL-6 в обеих группах больных до начала терапии в сравнении с контрольными значениями (табл. 3).

Таблица 3

Характеристика показателей системного воспаления, эндотелиальной дисфункции и тромбогенного риска у больных с инфекционно-зависимым обострением ХОБЛ

Показатели	Контрольная		Группы больных					
	группа		основная		сравнения			
	X	± m	X	± m	X	± m	P1	
СРБ (мг/л)	3,3	0,14	11,9	2,94	11,5	2,20	> 0,1	
р			< 0,01		< 0,001			
ИЛ-6 (пг/мл)	2,8	0,74	6,2	0,50	5,9	0,69	> 0,1	
p			< 0,001		< 0,01			
ЭТ-1 (фмоль/мл)	0,3	0,04	2,7	0,73	2,3	0,72	> 0,1	
p			< 0,01		< 0,01			
D – димер (мг/л)	0,1	0,01	1,6	0,38	1,3	0,24	> 0,1	
P			< 0,001		< 0,001			

При этом отмечалось также повышение уровней ЭТ-1 и D-димеров без значимых различий в обеих группах пациентов, что указывает на эндотелиальную дисфункцию и эндотелием опосредованную активацию гемостатических реакций с повышением тромбогенного риска. В основной группе больных после лечения N-ацетилцистеином наблюдалось снижение показателя системного воспалительного ответа ИЛ-6 до уровня контрольных данных (рис. 4).

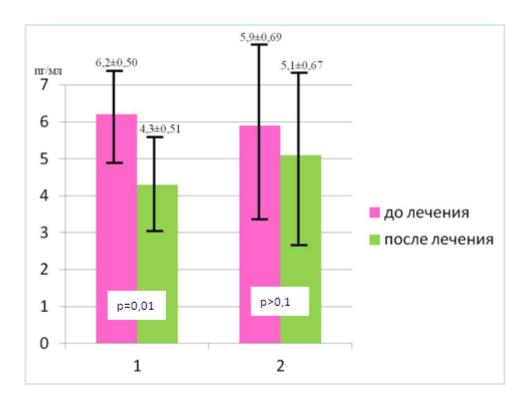
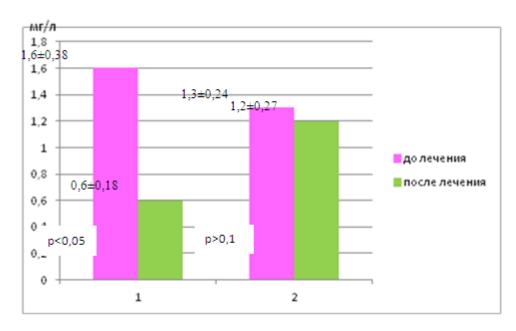



Рис. 4. Динамика содержания интерлейкина-6 в периферической крови больных с обострением ХОБЛ на фоне терапии N-ацетилцистеином: 1 — основная группа; 2 — группа сравнения

Цитокин ИЛ-6 играет ведущую роль в стимуляции трансформации В-лимфоцитов в антителопродуцирующие клетки [1]. По нашему мнению, ослабление интенсивности системного иммунного ответа может быть обусловлено уменьшением повреждающих воздействий окислительного стресса на легочную ткань и снижением антигенной стимуляции. На фоне уменьшения активности воспаления отмечалось снижение уровня D-димеров в плазме крови, что ассоциируется с уменьшением тромбогенного риска (рис. 5).

Рис. 5. Динамика плазменного содержания D-димеров у больных с обострением ХОБЛ на фоне терапии N-ацетилцистеином: 1 — основная группа; 2 — группа сравнения

Выводы

- воспаление у больных с обострением ХОБЛ 1. Системное характеризуется повышением содержания С-реактивного белка плазмы, интерлейкина-6, матриксной металлопротеиназы ММП-1, а также снижением экспрессии пептида, активирующего нейтрофилы НАП-2 в сравнении с контрольной Активация системных воспалительных реакций ассоциируется с возрастанием плазменного содержания показателей эндотелиальной дисфункции и тромбинемии эндотелина-1 и D-димеров.
- 2. Экспрессия матриксной металлопротеиназы ММП-9 находится в обратной корреляционной связи с содержанием С-реактивного белка в периферической крови и может использоваться как маркер системного воспаления у больных ХОБЛ.
- 3. Антиоксидантная терапия с применением N-ацетилцистеина сопровождается снижением показателя адаптивного иммунного ответа интерлейкина-6 до уровня, сопоставимого с нормальными значениями. Действие антиоксиданта ассоциируется также с высоким уровнем матриксной металлопротеиназы-9, сниженной экспрессией хемокина НАП-2.
- 4. Применение N-ацетилцистеина у больных с инфекционно-зависимым обострением ХОБЛ сопровождается снижением содержания D-димеров плазмы, что указывает на уменьшение тромбогенного риска у этой категории больных.

Список литературы

- 1. Иммунология: пер. с англ. / Д. Мейл [и др.]. М.: Логосфера, 2007. 568 с.
- 2. Кузник Б. И. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме и патологии / Б. И. Кузник. Чита : Экспресс-издательство, 2010. 832 с.
- 3. Респираторная медицина : руководство в 2 т. / под ред. А. Г. Чучалина. М. : ГЭОТАР-Медиа, 2007. Т. 1. 800 с.
- 4. Barnes P. J. Systemic manifestations and comorbidities of COPD / P. J. Barnes, B. R. Celli // Eur. Respir. J. 2009. Vol. 33. P. 1165–1185.
- 5. Dekhuijzen P. N. R. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease / P. N. R. Dekhuijzen // Eur. Respir. J. 2004. Vol. 23. P. 629–636.
- 6. Fu X. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation / X. Fu, J. L. Kao, C. Bergt [et al.] // J. Biol. Chem. 2004. Vol. 279. P. 6209–6212.
- 7. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO workshop report. Last updated 2009 [electronic resource]. www.goldcopd.org.
- 8. Gunen H. Venous thromboemboli and exacerbations of COPD / H. Gunen, G. Gulbas, E. In [et al.] // Eur. Respir. J. 2010. Vol. 35. P. 1243–1248.
- 9. Perera W. R. Inflammatory changes, recovery and recurrence at COPD exacerbation / W. R. Perera, J. R. Hurst, T. M. A. Wilkinson [et al.] // Eur. Respir. J. 2007. Vol. 29. P. 527–534.
- 10. Van den Steen P. E. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9) / P. E. Van den Steen, B. Dubois, I. Nelissen // Crit. Rev. Biochem. Mol. Biol. 2002. Vol. 37. P. 376–536.

N-ACETYLCYSTEINE INFLUENCE ON SYSTEM INFLAMMATION AT RESCRUDESCENCE OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

I.Y. Zeimakh¹, Y.V. Korenovsky¹, G.I. Kostyuchenko², A.P. Momot³, T.A. Kornilova⁴, A.I. Algazin¹, Y.N. Shoykhet¹

¹SEI HPE «Altai State Medical University Minhealthsocdevelopment» (c. Barnaul)

²SHE «Altai Regional Clinical Hospital» (c. Barnaul)

³Altai Branch of Hematological Research Center (c. Barnaul)

⁴MHE «City Hospital № 5» (c. Barnaul)

It is analyzed the results of an open non-randomized comparative study of the effect of N-acetylcysteine on the mechanisms of systemic inflammation in patients with infection — dependent exacerbation of COPD. Activity indicators of systemic inflammation were elevated levels of plasma C-reactive protein, interleukin — 6, the expression of matrix metalloproteinase-9, was in inverse correlation with the level of C-reactive protein. Antioxidant effects of N-acetylcysteine were accompanied by normalization of the interleukin-6, increased levels of matrix metalloproteinase-9 and reduction of D-dimer in the peripheral blood.

Keywords: N-acetylcysteine, exacerbation of COPD, matrix metalloproteinases, D-dimer, endothelin-1.

About authors:

Tseymakh Irina Yakovlevna — candidate of medical sciences, assistant of therapy and family medicine chair FAT and SEI HPE «Altai State Medical University Minhealthsocdevelopment», fax 8(3852) 68-50-23, e-mail: irintsei@rambler.ru

Korenovsky Yury Vladimirovich — candidate of medical sciences, assistant of biochemistry and clinical laboratory diagnostics chair at SEI HPE «Altai State Medical University Minhealthsocdevelopment», contact phone: 8(3852) 26-07-02, e-mail: timidin@gmail.com

Momot Andrey Pavlovich — doctor of medical sciences, professor, director of Altay Branch of Hematological Scientific Center, contact phone: 8(3852) 26-92-87, e-mail: xyzan@yandex.ru

Kornilova Tatyana Aleksandrovna — head of pulmonology unit № 2 MHE « City hospital № 5», fax: 8(3852) 68-84-38, e-mail: takkorn@rambler.ru

Algazin Anatoly Ivanovich — doctor of medical sciences, professor, head of therapy and family medicine chair FAT and PDD SEI HPE «Altai State Medical University Minhealthsocdevelopment», fax: 8(3852) 36-60-91, e-mail: rector@agmu.ru

Kostyuchenko Gennady Ivanovich — doctor of medical sciences, professor, Deputy Chief Doctor on scientific work SHE «Altay regional hospital», phone / fax: 8(3852) 68-98-56, e-mail: gkostyuchenko@mail.ru

Shoihet Jacob Nahmanovich — doctor of medical sciences, professor, the corresponding member of the Russian Academy of Medical Science, head of faculty surgery chair of I. I. Neimark with a course of surgery FAT and PDD at medical faculty SEI HPE «Altai State Medical University Minhealthsocdevelopment», phone/fax: (3852) 68-50-23, e-mail: starok100@mail.ru

List of the Literature:

- 1. Immunology: trans. from English / D. Mail [etc.]. M: Logosphere, 2007. 568 P.
- 2. Kuznik B. I. Cellular and molecular mechanisms of regulation of hemostasis system in norm and at pathology / B. I. Kuznik. Chita: Express publishing house, 2010. 832 P.
- 3. Respiratory medicine: guidance in 2 v. / under the editorship of A. G. Chuchalin. M: GEOTAR-MEDIA, 2007. —V. 1. 800 P.
- 4. Barnes P. J. Systemic manifestations and comorbidities of COPD / P. J. Barnes, B. R. Celli // Eur. Respir. J. 2009. Vol. 33. P. 1165–1185.
- 5. Dekhuijzen P. N. R. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease / P. N. R. Dekhuijzen // Eur. Respir. J. 2004. Vol. 23. P. 629–636.
- 6. Fu X. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation / X. Fu, J. L. Kao, C. Bergt [et al.] // J. Biol. Chem. 2004. Vol. 279. P. 6209–6212.
- 7. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO workshop report. Last updated 2009 [electronic resource]. www.goldcopd.org.
- 8. Gunen H. Venous thromboemboli and exacerbations of COPD / H. Gunen, G. Gulbas, E. In [et al.] // Eur. Respir. J. 2010. Vol. 35. P. 1243–1248.
- 9. Perera W. R. Inflammatory changes, recovery and recurrence at COPD exacerbation / W. R. Perera, J. R. Hurst, T. M. A. Wilkinson [et al.] // Eur. Respir. J. 2007. Vol. 29. P. 527–534.
- 10. Van den Steen P. E. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9) / P. E. Van den Steen, B. Dubois, I. Nelissen // Crit. Rev. Biochem. Mol. Biol. 2002. Vol. 37. P. 376–536.