УДК 616.831-001.35:616-073.788

А.А. Суфианов, Г.З. Суфианова, А.Г. Шапкин, Ю.Г. Шапкин, М.В. Таборов

ВЛИЯНИЕ ЛОКАЛЬНОГО КОМПРЕССИОННОГО ПОВРЕЖДЕНИЯ НА БИОЭЛЕКТРИЧЕСКУЮ АКТИВНОСТЬ ГОЛОВНОГО МОЗГА

Научно-практический Восточно-Сибирский центр малоинвазивной нейрохирургии ГУ НЦ МЭ ВСНЦ СО РАМН (Иркутск) Иркутский государственный медицинский университет (Иркутск) Институт Солнечно-Земной физики СО РАН (Иркутск)

Изучены изменения уровня постоянного потенциала (УПП) и ЭЭГ при локальном компрессионном повреждении головного мозга. Установлено, что постепенная компрессия коры головного мозга сопровождается негативными сдвигами УПП, изменения медленной электрической активности менее специфичны и отражают изменения функционального состояния нервной ткани в результате развития деполяризационных процессов. Наблюдалась высокая обратная линейная зависимость между степенью компрессии и негативными сдвигами постоянного потенциала (r = -0,85, p < 0,005). Комплексная регистрация УПП и медленной электрической активности позволяет эффективно конпрессии и негативными сдвигами постояния по потенциала (r = -0,85, p < 0,005). Комплексная регистрация УПП и медленной электрической активности позволяет эффективно конпролировать изменения функционального состояния нервной ткани при различных воздействиях, сопровождающихся тракцией и компрессией вещества мозга и может использоваться в качестве объективного маркера, что поможет избежать развития повреждения головного мозга во время нейрохирургических операций.

Ключевые слова: уровень постоянного потенциала, электроэнцефалограмма, повреждение головного мозга

INFLUENCE OF LOCAL COMPRESSION INJURY ON BIOELECTRICAL ACTIVITY OF THE BRAIN

A.A. Sufianov, G.Z. Sufianova, A.G. Shapkin, Yu.G. Shapkin, M.V. Taborov

Scientific-practical Eastern-Siberian Center of Miniinvasive Neurosurgery SC ME ESSC SB RAMS, Irkutsk Irkutsk State Medical University, Irkutsk Institute of Sun-Earth Physics, Irkutsk

DC potential shift and *EEG* are studied at local brain compression injury. It is established, that the gradual compression of a brain cortex is accompanied by *DC* negative shifts, changes of slow electric activity are less specific and reflect changes of a functional state of a nervous tissue as a result of development depolarization processes. High return linear dependence between a brain compression degree and *DC* negative shifts was observed (r = -0.85, p < 0.005). Integrated registration of *DC* potential and slow electric activity allows to supervise effectively changes of a functional state of a nervous tissue at the various influences accompanied

traction and compression of a brain and can be used as an objective marker that will assist to avoid development of brain injury during neurosurgical operations. **Key words:** direct current (DC) potential, electroencephalogram, brain injury

Оценка функционального состояния головного мозга, по данным регистрации его спонтанной электрической активности, широко применяется в экспериментальной нейрофизиологии и медицине [2, 8, 13]. Особый интерес в последние годы привлекают медленные длительные потенциалы милливольтного диапазона, регистрация которых позволяет контролировать степень деполяризации в очаге повреждения [1, 5, 6, 13]. В то же время, изолированная оценка уровня постоянного потенциала (УПП) без учета изменений медленноволновой электрической активности головного мозга имеет намного меньшее прогностическое и диагностическое значение [13]. В настоящее время нет однозначных представлений об изменении данных параметров при повреждении. Одни и те же по своей природе воздействия, по данным разных авторов, могут вызывать различные ЭЭГ и УППответы [2, 5, 7].

Целью данной работы было изучение влияния компрессии коры головного мозга на изменения функционального состояния нервной ткани по данным одновременной регистрация уровня постоянного потенциала и ЭЭГ.

МАТЕРИАЛЫ И МЕТОДЫ

Работа выполнена на 8 крысах самцах, весом 180 — 220 г. Вживление электродов, а также другие инвазивные процедуры (трепанация черепа, локальное дозированное сдавление головного мозга) проводились под адекватным обезболиванием этаминал-натрием (40 мг/кг внутрибрюшинно). Опыты на животных осуществляли согласно «Правилам проведения работ с использованием экспериментальных животных» (Приказ Минздрава СССР N 755 от 12.08.1977 г.).

Локальное компрессионное повреждение моделировали по оригинальной методике путем дозированной компрессии головного мозга [3, 14]. С этой целью, после фиксации животного в стереотаксическом аппарате, выполняли трепанационное отверстие в правой теменной области и обнажали твердую мозговую оболочку (ТМО) головного мозга. Для одновременной регистрации электрофизиологических параметров и проведения компрессии мозга использовался электрод специальной конструкции [3]. Электрод крепился в манипуляторе стереотаксического аппарата и устанавливался на поверхность ТМО головного мозга. Повреждение создавалось путем дозированного погружения этого электрода на глубину 1, 2 и 3 мм. Запись биоэлектрической активности начинали за 5-10 минут до повреждения и продолжали во время всего периода компрессии. После завершения эксперимента на место костного дефекта помещалась тефлоновая пластинка с установленным обычным электродом. Вся конструкция фиксировалась быстротвердеющей пластмассой.

Оценку функционального состояния головного мозга осуществляли путем одновременной регистрации медленной электрической активности (ЭЭГ), как показателя функциональной активности, и УПП, отражающего уровень поляризации нервной ткани.

Запись электрофизиологических показателей осуществлялась непрерывно после стабилизации электроэнцефалограммы, не ранее чем через 20 минут после начала исследования. Регистрация био-электрической активности проводилась по униполярной методике с помощью усилителя постоянного тока с входным сопротивлением 1 ТОм. Полученные данные оцифровывались с частотой 128 Гц и вводились в компьютер для дальнейшей математической обработки. Построение амплитудного спектра ЭЭГ осуществлялась с помощью алгоритма быстрого преобразования Фурье с использованием оригинальной прикладной программы. Эпохи анализа данным методом составляли 1 сек.

Для математической обработки брались только безартефактные участки. Значения амплитудного спектра усреднялись по 5 частотным диапазонам: дельта-1 (0,5-0,78 Гц), дельта-2 (0,78-3,88 Гц), тета (3,88-7,75 Гц), альфа (7,75-12,4 Гц) и бета (12,4-32,6 Гц). Суммарная амплитуда медленной электрической активности рассчитывалась путем усреднения амплитуд всего диапазона анализируемых частот.

Статистическую обработку результатов проводили с помощью пакета программ MS Office и Statistica 6.0. Для оценки статистической значимости полученных результатов использовались параметрический критерий t — Стьюдента и непараметрический критерий U — Уилкоксона-Манна-Уитни.

РЕЗУЛЬТАТЫ

Как видно из рисунка 1, погружение в полость черепа цилиндрического стержня сопровождалось постепенной негативизацией УПП в зоне компрессии мозга. Наблюдалась высокая обратная линейная зависимость между глубиной погружения стержня и степенью негативизации постоянного потенциала (r = -0.85, p < 0.005). В среднем, при увеличении компрессии головного мозга на 1 мм (площадь стержня 28,3 мм²) отмечалось увеличение степени негативизации УПП на 4,36 ± 0,65 мВ (p < 0.005).

Изменения медленной электрической активности были менее специфичны. Первоначально, при погружении стержня на глубину 1 – 2 мм, наблюдалось умеренное увеличение суммарной амплитуды ЭЭГ на 15 – 28 %. При этом статистичес-

Рис. 1. Изменения УПП в зоне повреждения во время компрессии коры головного мозга. * – *p* < 0,05, ** – *p* < 0,005 – относительно исходного уровня; # – *p* < 0,05 – относительно предшествующего уровня.

Таблица 1

Изменения УПП (мВ) и медленной электрической активности (мкВ) во время компрессии коры головного мозга

	дельта-1	дельта-2	тета	альфа	бета	суммарная амплитуда	упп
0 мм	289,9 ± 39,4	141,1 ± 17,7	71,7 ± 8,4	33,6 ± 3,1	8,3 ± 0,9	108,9 ± 13,3	0,0 ± 0,1
1 мм	364,3 ± 76,4	149,1 ± 19,7	68,5 ± 7,9	36,2 ± 3,7	10,8 ± 1,9	125,8 ± 20,4	-4,3 ± 1,9*
2 мм	401,4 ± 87,0	157,3 ± 18,3	76,8 ± 7,2	49,0 ± 8,1*	13,0 ± 2,1**	139,5 ± 22,0	-8,5 ± 1,7***
3 мм	285,9 ± 56,0	143,4 ± 16,2	75,6 ± 12,7	40,8 ± 5,1	10,5 ± 1,7	111,2 ± 16,2	-13,3 ± 4,4*** #

Примечание: * – *p* < 0,05, ** – *p* < 0,01, *** – *p* < 0,005 – относительно исходного уровня; # – *p* < 0,05 – относительно предшествующего уровня.

Рис. 2. Взаимосвязь изменений УПП и суммарной амплитуды ЭЭГ при компрессии коры головного мозга.

ки значимые изменения амплитуды регистрировались только в альфа и бета диапазонах. При увеличении степени компрессии головного мозга отмечалось депрессия амплитуда ЭЭГ (табл. 1).

обсуждение

Изменения метаболизма и ионного гомеостаза нервной ткани при повреждении приводят к закономерным электрофизиологическим нарушениям [1, 4, 11]. По данным литературы, ишемия и гипоксия во всех случаях сопровождается развитием стойкой деполяризации нервной ткани, сопровождаемой подавлением электрокортикограммы и негативными сдвигами УПП [4, 11]. Ишемическая деполяризация связана, преимущественно, с нарушением энергозависимого активного трансмембранного переноса ионов против электрохимического градиента и стимуляцией глутаматных рецепторов на поверхности плазмолеммы нейронов. Предполагается, что деполяризация может быть главным и универсальным физиологическим проявлением повреждения нервной ткани [5, 6], так как существует высокая корреляция между степенью патоморфологических изменений и периинфарктными сдвигами УПП [4, 6, 7, 9, 10, 12].

Из результатов нашей работы видно, что постепенная компрессия коры головного мозга сопровождалась негативными сдвигами УПП, что отражало увеличение степени деполяризации. Изменения медленной электрической активности были менее специфичны и были связаны с изменениями функционального состояния нервной ткани в результате развития деполяризационных процессов. Взаимосвязь изменений УПП и медленной электрической активности головного мозга носила характер обратной параболической зависимости (рис. 2). При погружении электрода на глубину 1-2 мм отмечалось развитие состояния экзальтации, что выражалось в негативизации УПП до 4-8 мВ и увеличении суммарной амплитуды ЭЭГ; дальнейшее нарастание деполяризационных процессов до 12-15 мВ сопровождалось депрессией медленноволновой активности головного мозга, в результате развития состояния деполяризационного торможения.

Таким образом, комплексная регистрация УПП и медленной электрической активности позволяет эффективно контролировать изменения функционального состояния нервной ткани при различных воздействиях, сопровождающихся тракцией и компрессией вещества мозга и может использоваться в качестве объективного маркера, позволяющего избежать развития повреждения головного мозга во время нейрохирургических операций.

выводы

1. Повреждение головного мозга сопровождается негативизацией уровня постоянного потенциала до 20 мВ. Существует высокая обратная линейная зависимость между степенью повреждения и сдвигами УПП головного мозга.

2. Изменения медленноволновой активности головного мозга менее специфичны и отражают последовательные стадии деполяризации нервной ткани.

3. Регистрация уровня постоянного потенциала и ЭЭГ является эффективным инструментальным методом диагностики функционального состояния головного мозга. Изолированная оценка изменений ЭЭГ либо уровня постоянного потенциала имеет намного меньшее прогностическое и диагностическое значение.

ЛИТЕРАТУРА

1. Аладжалова Н.А. Психофизиологические аспекты сверхмедленной электрической активности головного мозга / Н.А. Аладжалова. — М.: Наука, 1979. — 216 с.

2. Изменения уровня постоянного потенциала при фокальной церебральной ишемии и на фоне

введения циклопентиладенозина у крыс / Г.З. Суфианова, С.Э. Мурик, Л.А. Усовидр. // Бюлл. эксп. биол. и мед. — 2003. — № 6. — С. 576—578.

3. Суфианова Г.З. Нейропротекторное действие агонистов аденозиновых рецепторов при фокальных ишемических и травматических повреждениях ЦНС: Дис. ... д-ра мед. наук. — Иркутск, 2003.

4. Hossmann K.A. Periinfarct depolarizations / K.A. Hossmann // Cerebrovasc. Brain Metab. Rev. – 1996. – 8 (3). – P. 195–208.

5. Hossmann K.A. Glutamate hypothesis of stroke / K.A. Hossmann // Fortschr. Neurol. Psychiatr. - 2003. - Vol. 71, Suppl. 1. - P. 10-15.

6. Mild hypothermia on anoxic depolarization and subsequent cortical injury following transient ischemia / M. Kaminogo, A. Ichikura, M. Onizuka et al. // Neurol. Res. – 1999. – Vol. 21, N 7. – P. 670–676.

7. Changes of local cerebral glucose utilization, DC potential and extracellular potassium concentration in experimental head injury of varying severity / M. Kubota, T. Nakamura, K. Sunami et al. // Neurosurg. Rev. – 1989. – Vol. 12, Suppl. 1. – P. 393–399.

8. Lopes da Silva F. EEG analysis: theory and practice / F. Lopes da Silva // In Electroencephalography: Basic Principles, Clinical Applications and Related Fields / Eds.: E. Neidermyer, F. Lopes da Silva. – Baltimore/Munich: Urban & Schwartzenberg, 1982. – P. 685–711.

9. Mies G. Prevention of peri-infarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat / G. Mies, K. Kohno, K.A. Hossmann // J. Cereb. Blood Flow Metab. - 1994. - Vol. 14. - P. 802-807.

10. Nedergaard M. Characterization of cortical depolarizations evoked in focal cerebral ischemia / M. Nedergaard, A.J. Hansen // J. Cereb. Blood Flow Metab. – 1993. – Vol. 13. – P. 568–574.

11. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats / K. Ohta, R. Graf, G. Rosner et al. // Stroke. -2001. -32 (2). -P.535-543.

12. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model / H. Otsuka, K. Ueda, A. Heimann, O. Kempski // Exp. Neurol. – 2000. – 162 (1). – P. 201–214.

13. Vanhatalo S. Full-band EEG (fbEEG): a new standard for clinical electroencephalography / S. Vanhatalo, J. Voipio, K. Kaila // Clin. EEG Neurosci. -2005. - 36 (4). - P. 311 - 317.

14. A new model of localized ischemia in rat somatosensory cortex produced by cortical compression / S. Watanabe, J.R. Hoffman, R.L. Craik et al. // Stroke. – 2001. – Vol. 32, N 11. – P. 2615–2623.