А.А. Гафуров¹, В.В. Ботвиньева², М.М. Алиев¹

- 1 Ташкентский педиатрический медицинский институт, Ташкент
- ² Научный центр здоровья детей РАМН, Москва

Связь функциональных параметров печени с нарушениями портопеченочного крово- и лимфообращения у детей с циррозом печени

Нарушения крово- и лимфообращения в печени, являясь патофизиологическим отражением цирротической трансформации органа, во многом определяют ее функциональное состояние [1, 2]. Блокирование значительной части синусоидального русла печени приводит к компенсаторному сбросу крови по внутри- и внеорганным шунтам минуя паренхиму органа [3, 4]. Совершенно очевидно, что нарушение трофики гепатоцитов отражается на их функциональных параметрах. Однако вопрос о тяжести и глубине функциональных расстройств в зависимости от степени редукции синусоидального эффективного печеночного кровотока, отражающего внутри- и внепеченочное портокавальное шунтирование крови, остается до конца не решенным.

Целью настоящего исследования явилась оценка функционального состояния печени и ее связь с нарушениями портопеченочного крово- и лимфообращения у детей с циррозом печени.

В исследование включено 123 ребенка в возрасте от 3 до 15 лет с внутрипеченочной блокадой портального кровообращения, вызванной постгепатитным циррозом печени на различных стадиях его развития. Клиническая оценка стадий развития и степени тяжести цирроза печени осуществлялась согласно международным рекомендациям (Акапулько, 1978 г.) с дополнениями НИИ Педиатрии РАМН (1987 г.). Начальный цирроз печени установлен в 26 случаях; сформированный цирроз «А» и «В» стадии в 71 случае, терминальный (декомпенсированный или атрофический) — у 26 детей. Контрольную группу составили 25 практически здоровых детей. Оценка функционального состояния печени базировалась на методах радиоизотопного сканирования (Те99-коллоид) и гепатографии (Те99-Хида). Известно, что Те99-коллоид захватывается купферовскими клетками печени и распределяется в органе в соответствии с локальным значением синусоидального кровотока, а Те⁹⁹-Хида поглощается полигональными клетками и выводится с желчью, характеризуя поглотительно-выделительную функцию гепатоцитов [3-5]. Изучены следующие функциональные и гемодинамические показатели: коэффициент общего и печеночного клиренса радиоколлоида, индекс его печеночного захвата, коэффициент ретенции печени, период максимального накопления препарата в печени (Тмакс), период полувыведения препарата, общий печеночный кровоток, эффективный печеночный кровоток, объем печеночного лимфодренажа (Q-лимфоток).

Статистический анализ выполнен с помощью интегрированного пакета программы MS Office Excel. Количественные переменные представлены в виде среднеарифметического значения \pm среднеквадратичное отклонение. Статистическая значимость сравниваемых показателей оценивалась по t-критерию Стьюдента для независимых выборок.

В процессе обследования и лечения детей, больных циррозом печени, было обнаружено, что у детей младшего возраста (до 7 лет) на разных этапах развития болезни чаще отмечается асцит, а у детей более старшего возраста — пищеводно-желудочные кровотечения. С учетом этого был проведен сравнительный анализ изменений функциональных и гемодинамических параметров печени в 2 возрастных группах: 1-я группа — дети младшего возраста (3-7 лет), 2-я — старшего возраста (8-15 лет). На сканограммах печени детей распределение радиоколлоида имело характерные особенности не только для каждой возрастной группы, но и для стадии развития цирроза печени. Для детей младшего возраста было характерно центральное накопление радиоколлоида с выраженным «обеднением» периферии печени и увеличением захвата радиоколлоида селезенкой (табл. 1). Для детей старшего возраста (8-15 лет) было свойственно захватывание радиоколлоида практически всем органом с неравномерным распределением по центру и периферии. Доля селезеночного захвата радиоколлоида была значительно меньше (табл. 2).

Распределение радиоколлоида в печени на стадиях развития цирроза печени также проявлялось в соответствии с редукцией эффективного печеночного кровотока. На начальной стадии развития цирроза печени неравномерное распределение радиоколлоида как в долях, так и по центру и периферии органа, отмечалось более чем у 70% больных. В сформированной стадии развития цирроза печени тяжесть процесса манифестировалась отрицательной динамикой общего клиренса радиоколлоида за счет достоверной редукции синусоидального русла печени и значительным возрастанием захвата доли радиоколлоида селезенкой. При этом сравнительно высокий

125

126

Таблица 1. Показатели функции печени и регионарного кроволимфообращения у детей младшего возраста (3–7 лет) на разных стадиях развития цирроза печени

Показатель	Контрольная группа, <i>n</i> = 25	Цирроз печени				
		Начальный, n = 11	Сформированный		Терминальный,	
			Стадия A, n = 7	Стадия B, <i>n</i> = 5	n = 5	
Коэффициент общего клиренса	0,54±0,03	0,50 ± 0,03	0,46 ± 0,08	0,4 ± 0,06	0,40 ± 0,05	
Коэффициент печеночного клиренса	0,48 ± 0,03	$0,40 \pm 0,04$	0,30 ± 0,03	0,28 ± 0,02	0,20 ± 0,02	
Индекс печеночного захвата	3,98 ± 0,14	3,60 ± 0,5	3,70 ± 0,33	3,68 ± 0,20	2,51 ± 0,4	
Коэффициент ретенции печени	1,70 ± 0,02	1,71 ± 0,05	1,79 ± 0,1	1,80 ± 0,09	1,45 ± 0,08	
Т _{макс} , мин	16,8 ± 0,30	19,6 ± 1,4	21,4 ± 0,94	23,7 ± 2,8	25,5 ± 3,0	
Т _{1/2} , мин	29,8 ± 0,80	39,3 ± 3,3	48,8 ± 2,9	57,5 ± 3,8	68,5 ± 4,8	
ОПК, мл/мин/кг	28,91 ± 1,04	31,4 ± 1,02	28,8 ± 1,35	26,1 ± 1,2	25,6 ± 1,4**	
ЭПК, мл/мин/кг	22,31 ± 0,91	22,1 ± 1,4	18,5 ± 1,1	16,4 ± 1,6	13,9 ± 1,4	
Q-лимфоток, мл/мин/кг	2,49 ± 0,06	1,60 ± 0,11	1,18 ± 0,09	1,05 ± 0,07	0,93 ± 0,12**	

Примечание:

здесь и в табл. 2:

*-p < 0.05; **-p < 0.01 статистически значимое различие по сравнению с показателем у практически здоровых детей (контрольная группа);

 $\mathsf{T}_{\mathsf{макс}}$ — период максимального накопления радиоколлоида в печени; $\mathsf{T}_{1/2}$ — период полувыведения радиоколлоида;

ОПК — общий печеночный кровоток; ЭПК — эффективный печеночный кровоток.

Таблица 2. Показатели функции печени и регионарного кроволимфообращения у детей старшего возраста (8—15 лет) на разных стадиях развития цирроза печени

Показатель	Контрольная группа, <i>n</i> = 25	Цирроз печени				
		Начальный, n = 15	Сформированный		Терминальный,	
			Стадия A, n = 28	Стадия B, n = 31	n = 21	
Коэффициент общего клиренса	0,58±0,05	$0,51 \pm 0,01$	$0,48 \pm 0,03$	0,41 ± 0,04	0,37 ± 0,05	
Коэффициент печеночного клиренса	0,51 ± 0,05	0,44+0,07	0,39+0,01	0,36+0,03	0,35+0,05	
Индекс печеночного захвата	4,01 ± 0,2	3,69 ± 0,09	3,57 ± 0,27	3,18 ± 0,17	3,01 ± 0,04	
Коэффициент ретенции печени	1,79 ± 0,05	1,81 ± 0,3	1,99 ± 0,52	1,71 ± 0,1	1,49 ± 0,02	
Т _{макс} , мин	15,01 ± 0,34	19,1 ± 1,41	21,3 ± 1,7	22,7 ± 1,09	25,1 ± 2,01	
Т _{1/2} , мин	27,8 ± 0,75	33,1 ± 4,2	46,4 ± 5,1	50,7 ± 4,9*	53,8 ± 3,9**	
ОПК, мл/мин/кг	32,01 ± 1,04	30,06 ± 1,08*	28,1 ± 1,05*	23,1 ± 1,03*	20,9 ± 1,1*	
ЭПК, мл/мин/кг	23,5 ± ,31	22,7 ± 1,4	22,2 ± 1,1	19,4 ± 1,02	18,8 ± 0,94	
Q-лимфоток, мл/мин/кг	2,49 ± 0,06	2,10 ± 0,08	1,51 ± 0,08	1,4 ± 0,11	1,31 ± 0,99	

индекс печеночного захвата радиоколлоида в сформированной А-стадии мог свидетельствовать об активации фагоцитарной активности оставшихся купферовских клеток. Однако нарастающая активация ретикулогистиоцитарной системы селезенки в сформированной В-стадии процесса указывает на наличие субкомпенсации портопеченочного кровообращения.

Прогрессирующее уменьшение эффективного печеночного кровотока у больных в терминальной стадии цирроза печени могло быть обусловлено увеличением внутри- и внепеченочного портокавального шунтирования крови. Это проявлялось отрицательной динамикой показателей общего клиренса радиоколлоида, не компенси-

руемых даже максимально увеличенной активностью селезенки. Выявленные расстройства синусоидального кровотока и функции ретикулогистиоцитарных клеток печени сопровождались не менее выраженными нарушениями функции полигональных клеток органа (см. табл. 1 и 2).

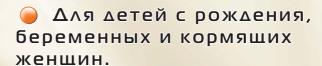
Достоверное увеличение времени накопления ($T_{\text{макс}}$) и полувыведения ($T_{1/2}$) радиоколлоида отмечено уже на начальной стадии развития цирроза печени у детей и младшей, и старшей возрастных групп. Различие анализируемых групп проявилось в существенной разнице уровня выделительной функции печени ($T_{1/2}$). Так, у детей младшего возраста (3-7 лет) в сформированной и тер-

Выявленная нами отрицательная динамика показателей выделительной функции печени отчетливо коррелировала с прогрессирующим уменьшением значений эффективного печеночного кровотока и лимфодренажа (Q-лимфоток) (r=0,78; p<0,001). Снижение уровня последнего у детей младшего возраста становилось достоверным уже на

начальной и сформированной А-стадиях процесса, а в терминальной стадии цирроза печени печеночный лимфодренаж сокращался более чем в 2,6 раза. У детей старшего возраста кривая уменьшения этого показателя на разных стадиях развития цирроза печени была более пологой, и достоверное его уменьшение начиналось в сформированной В-стадии болезни.

Таким образом, превалирование редукции эффективного печеночного кровотока на фоне прогрессирующего уменьшения печеночного лимфодренажа, обнаруженное у детей младшего возраста, может быть косвенным показателем более выраженного внутрипеченочного портокавального шунтирования, чем внепеченочного, характерного для детей старшего возраста.

СПИСОК ЛИТЕРАТУРЫ


- 1. Блюгер А.Ф. Новое в гепатологии: методы, факты, концепции. Рига, 1988. С. 188.
- 2. Varin F., Huet P.M. Hepatic microcirculation in the perfused cirrhotic rat liver // J. Clin. Invest. 1985. V. 76, Nº 5. P. 1904–1912.
- 3. Алиев М.М. Патогенетические основы перестройки воротнопеченочного кровообращения при циррозе печени // Мед. журнал Узбекистана. 1989. $N^{\rm Q}$ 10. C. 56-61.
- 4. Zoli M., Magalotti D., Bianshi G. et al. Functional hepatic elow and Doppler-assessed total hepatic flow in control subjects and in
- patiens with cirrhosis // J. Heppatol. 1995. V. 23, Nº 2. P. 129–134.
- 5. Серов В.В., Лапиш К. Морфологическая диагностика заболеваний печени. М., 1989. С. 336.
- 6. Serra C., Piscaglia F., Valgimigli M. et al. Duplex Doppler evaluation of splenic artery resistance in liver cirrhosis // E. J. Ultrasond. 1996. V. 4. N° 1. P. 50.
- 7. Миронов С.П. Корреляционная зависимость радионуклеидных и ультразвуковых критериев оценки функции печени // Вестн. рентгенологии и радиологии. 1996. N° 4. C. 90.

127

5050KOAb

HOBO

ПИТАНИЕ НА ОСНОВЕ КОЗЬЕГО МОЛОКА

Профилактика и лечение аллергии к белкам коровьего молока и сои.

Профилактика рахита и остеопороза.

Тел.:(495)361-16-83; (495)362-75-94

www.bibicall.ru