сообществом. В последнее время отмечается распространение полинаркомании, связанной с употреблением «лекарственных коктейлей» для усиления наркотического действия. Основным критерием диагностики отравлений наркотическими веществами является положительный результат судебно-химического исследования тканей и биологических сред трупа. Судебно-медицинская экспертиза трупов с исследованием биологического материала на наличие наркотических веществ включает в себя хроматографические методы анализа, такие, как тонкослойная хроматография, спектрофотометрия и другие. Для определения наркотических веществ чаще всего используется моча, как наиболее информативный биообъект исследования.

Среди методов обнаружения наркотических веществ использовали тонкослойную хроматографию и спектрофотометрию. Хроматография как физикохимический процесс основана на различных скоростях движения и размывания концентрационных зон компонентов, которые движутся в потоке подвижной фазы вдоль слоя неподвижной фазы. При этом следует иметь в виду, что исследуемые вещества находятся в обеих фазах. После разделения анализируемой смеси на отдельные компоненты хроматографирование прекращают и в хроматографических зонах проводят качественное и количественное определение (детектирование). Для обнаружения бесцветных соединений чаще всего используют облучение УФ-светом, опрыскивание химическими реагентами, смачивание проявляющим раствором, капельное нанесение реагента, экстрагирование зоны вещества с сорбента для последующего исследования полученных соединений физическими и химическими методами. Идентификация компонентов проводится по свидетелям (метчикам) – известным эталонным веществам сравнения, хроматографируемым одновременно, на одной и той же пластинке, с анализируемой пробой.

Основными системами для двухмерной хроматографии наркотических веществ являются: 1) для опиатов: хлороформ – диоксан – ацетон – 25% р-р аммиака (45:47.5:5:2.5), этилацетат – этанол – аммиак (9:1:0.5); 2) для амфетаминов: хлороформ – ацетон – этанол – 25%-ный раствор аммиака (20:20:3:1), толуол - этанол - триэтиламин (9:1:1). Основной качественной характеристикой тонкослойной хроматографии является величина Rf, которая представляет собой отношение расстояний, которые пройдены исследуемым веществом и подвижной фазой. Для определения Rf очень важно точно установить положение фронта растворителя. При полном совпадении полученного значения с Rf известного соединения можно говорить только о возможной идентичности вещества, которую дополнительно подтверждали спектрофотометрией.

В скрининге наркотических веществ используются следующие реагенты для обнаружения: 1) раствор нингидрина, 2) реактив Драгендорфа, 3) реактив Манделина, 4) реактив Марки, 5) реактив Фреде; 6)

1%-ный раствор Черного прочного К (FBK). Помимо производных амфетамина FBK дает различные окрашивания (красного, синего, оранжевого, фиолетового цвета) с некоторыми другими веществами.

В основе количественных определений спектральными методами лежит закон Бугера-Ламберта-Бера, устанавливающий зависимость между оптической плотностью и концентрацией анализируемого раствора. Каждое идентифицируемое вещество имеет максимум (максимумы) поглощения при определенных длинах волн.

СОВРЕМЕННЫЕ МЕТОДЫ ЛУЧЕВОЙ ДИАГНОСТИКИ ТРИГЕМИНАЛЬНОЙ НЕВРАЛГИИ

Н.В. Топольскова, В.В Щедренок, О.В Могучая, К.И Себелев

РНИ нейрохирургический институт им. проф. А.Л. Поленова, г. Санкт-Петербург, Россия

E-mail авторов: nataleo_@mail.ru

Цель исследования: изучение возможностей лучевых методов для диагностики невралгии тройничного нерва (ТН).

Материал и методы.

Проведено комплексное лучевое обследование 103 пациентов с невралгией ТН, находившихся в РНХИ им. проф. А.Л. Поленова на протяжении 2008-2010 гг. Возраст больных составил 55±4 лет, длительность заболевания 12±3 лет. Исследование проведено с использованием СКТ и МРТ.

Результаты и их обсуждение.

При СКТ-исследовании обнаружены вариабельность и изменение выходных отверстий периферических ветвей ТН в виде значительного сужения в зоне локализации лицевых болей (31,1%), патология зубочелюстной системы (7,8%) и околоносовых пазух (3,9%), а также компрессия нерва костными экзостозами в области пирамиды височной кости (1,9%). При МРТ-исследовании выявлены локальные изменения в области всех зон трехнейронной тригеминальной системы в виде объемных образований (5,8%) и демиелинизирующего процесса (4,9%). Применение МРА позволило установить наличие нейроваскулярного конфликта (29,1%) и контакта (15,5%) в области входа корешка ТН в ствол мозга. У 33% больных обнаружено сочетание различных факторов.

По результатам проведенных лучевых исследований выделены группы пациентов: 1) с экстракраниальной компрессией ТН и его периферических ветвей и 2) интракраниальной компрессией чувствительного корешка ТН в области его входа в ствол мозга.

Первую группу составили 46 наблюдений, куда включены больные с изменением каналов и отверстий периферических ветвей ТН. К первой группе отнесены 8 больных с патологией зубочелюстной системы, у которых обнаружена дистопия зубов верхней и нижней челюстей. Вторую группу составили 52 наблюдения с интракраниальной компрессией корешка ТН (у 6 больных с опухолями задней черепной ямки и симптоматической тригеминальной невралгией). В остальных случаях имел место нейроваскулярный конфликт или контакт.

При этом у больных с нейроваскулярным конфликтом выявлены четкие MP-признаки компрессии корешка ТН в виде петли сосуда, вызывающей сдавление нерва (чаще всего верхней мозжечковой артерии), а также деформация и смещение корешка ТН в месте компрессии. У больных с нейроваскулярным контактом обнаружен параллельный ход с соприкосновением корешка ТН и сосуда, чаще всего с верхней каменистой веной.

Первым шагом алгоритма диагностики является проведение СКТ головы с исследованием костей лицевого скелета и основания черепа. Данные СКТ лицевого скелета имеют существенное значение для диагностики патологических изменений в околоносовых пазухах и зубочелюстной системе как причины лицевых болей. Важные сведения получены при СКТ-метрии каналов и выходных отверстий периферических ветвей ТН. Вторым шагом алгоритма диагностики является проведение МРТ, в том числе и с контрастным усилением. МРТ позволяет диагностировать опухоли, патологию сосудов мозга, последствия острого нарушения мозгового кровообращения, а также демиелинизирующие заболевания (в том числе постгерпетические изменения). Третьим шагом алгоритма диагностики является применение специальных программ и МРА. Эти исследования имеют значение для диагностики артериовенозных мальформаций сосудов мозга, выявления вазоневральной компрессии корешка ТН, а также контакта ТН с прилежащими сосудами (артериями и венами).

Выводы.

Пошаговый алгоритм лучевой диагностики позволяет выявить экстра- и интракраниальную компрессию ТН, а также их сочетание.

КЛИНИКО-НЕВРОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЧЕРЕПНО-МОЗГОВЫХ ПОВРЕЖДЕНИЙ ПРИ ПОЛИТРАВМЕ

Е.В. Хачатурова-Тавризян, В.В. Щедренок, О.В. Могучая

РНИ нейрохирургический институт им. проф. А.Л. Поленова, г. Санкт-Петербург, Россия

E-mail авторов: l.e.v_06@mail.ru

Цель исследования: изучение клинических особенностей черепно-мозговых повреждений при политравме.

Материал и методы.

В ходе работы изучена клиническая картина у 778 пострадавших с черепно-мозговой травмой (ЧМТ), находившихся на лечении в Покровской больнице Санкт-Петербурга за период 2005-2011 гг. Больные разделены на группы с изолированной (223) и сочетанной ЧМТ (555). Проанализированы клинико-неврологические данные и результаты комплексного обследования, включающего СКТ, обзорную рентгенографию и УЗИ поврежденных анатомических областей (АО). Тяжесть ЧМТ была различной степени и оценена как легкая (56%), среднетяжелая (7%) и тяжелая (37%). Сдавление головного мозга имело место в 410 наблюдениях с изолированной (118) и сочетанной ЧМТ (292), наибольшим был удельный вес субдуральных гематом (42,9%). Более чем у половины пострадавших доминирующим повреждением была ЧМТ (55%), далее следовали травма опорно-двигательного аппарата (18,2%), закрытая травма груди (15,4%) и живота (6,7%). При сочетанной ЧМТ наиболее велика была доля пострадавших с травмой двух (54,2%) и трех (24,8%) АО. Повреждение четырех и пяти АО имело место соответственно в 12,1% и 8,9% наблюдений. При политравме травматический шок различной степени обнаружен в 69,1% наблюдений.

Результаты и их обсуждение.

На фоне травматического шока и кровопотери при политравме имело место изменение симптоматики, характеризующей повреждение головного мозга. В этих условиях ЧМТ часто протекала при невыраженной клинической картине или атипично. Об этом свидетельствует, прежде всего, то, что у пациентов со сдавлением головного мозга реже проявлялись так называемые «гематомные» признаки, т.е. симптомы компрессии головного мозга. У всех пострадавших с сочетанной травмой отмечалось нарушение сознания. Светлый промежуток наблюдался почти в 2 раза реже в сравнении с изолированной ЧМТ, и имел место у 11,8% больных, при этом он носил абортивный характер почти у каждого пятого пострадавшего. Анизокория также отмечалась более чем в 2 раза реже. Несколько реже, чем при изолированной ЧМТ, удавалось выявить и парезы конечностей (38,9%). Брадикардия наблюдалась у значительно меньшей доли пациентов (лишь у 18,7%). Следующей особенностью клинического течения сочетанной ЧМТ было развитие псевдосиндромов со стороны головного мозга в виде имитации дислокационного и компрессионного синдромов. Они возникали у пациентов с ЧМТ легкой и средней тяжести, однако при наличии соответствующей симптоматики нейровизуализационными методами или при судебно-медицинском исследовании было подтверждено отсутствие дислокации и компрессии головного мозга. Псевдосиндромы со стороны головного мозга наблюдали при закрытой травме груди, сопровождающейся одно- или двусторонним гемотораксом, закрытой травме живота с гемоперитонеумом, а также при переломах костей таза и бедра. Темп регресса псевдосиндромов со сто-