Таблииа 2

Суб- и популяционный спектр лимфоцитов у больных КАР

Показатели		Группа 1 контроль (n =30 чел.)	Группа 2 ст. обострения (n = 30 чел.)	Группа 3 ст. ремиссии (n = 25 чел.)
CD 3 %		40,38±1,77	33,21±1,31**	36,33±1,62
CD 4 %		29,53±1,45	24,01±0,92	23,02±1,65*
CD 4\CD8		1,42±0,06	1,16±0,04**	1,36±0,08
CD 25 %		14,95±1,23	10,46±0,52**	13,45±1,54
CD 56 %		13,09±0,84	10,82±0,33**	12,23±0,82
CD 95 %		17,19±1,83	14,57±0,76**	16,35±1,56
Фагоцитоз	Акт %	50,55±3,44	45,68±1,68	54,92±3,89
нейтрофи-	Инт у.е.	1,41±0,14	1,64±0,11**	1,76±0,17
ЛОВ	Фаг. число у.е	2,73±0,15	4,3±0,19***	3,18±0,19
НСТ-тест	%	41,77±4,29	44,51±2,58	49,61±3,8
нейтр. спонтан- ный	Индекс у.е.	0,58±0,07	0,52±0,03***	0,63±0,05
ЛАН	Лизакт нейтр у.е.	268,29±30,86	251±8,31	327,69±20,78*
Ig, г\л	Ā	1,74±0,16	1,74±0,05***	2,26±0,14*
Ig E МЕ∖мл	Е	157,41±59,26	585,51±23,11**	423,34±93,78*

Примечание: *- достоверность отличий с контрольной группой AP в стадии ремиссии, **- достоверность отличий с контрольной группой AP в стадии обострения, ***- достоверность отличий AP в стадии обострения и группой АР в стадии ремиссии

Спонтанная продукция клетками ИФНу при КАР как в стадию обострении, так и в стадию ремиссии имеют тенденцию к росту в сравнении с группой контроля, при этом показатели не достигли статистической достоверности (табл. 3). При изучении РНА-индуцированной продукции отмечается однотипное повышение в обеих группах в сравнении с условно здоровыми.

Таблица 3 Спонтанная и индуцированная продукция IFNγ, IL4, IL1β и IL10 in vitro в цельной крови у больных КАІ

Показатели	Продукция цитокинов в стадии	Продукция цитокинов в стадии	Продукция цитокинов у условно	
	ремиссии (n=14)	обострения (n=21)	здоровых (n=16)	
Спонтанная продукция IL4 пг/мл	63,51±2,92***	1,73±0,21*,**	20,12±5,65	
РНА индуцированная продукция IL4 пг/мл	59,64±7,58	2,02±0,34*,**	35,58±7,51	
LPS индуцированная продукция IL4 пг/мл	50,25±5,59	1,88±0,14*,**	24,83±6,83	
Спонтанная продукция $IL1\beta$ пг/мл	681,91±69,53	36,17±7,51*,**	377,17±77,44	
РНА индуцированная продукция IL1β пг/мл	693,81±71,58	40,97±4,51*,**	442,54±101,01	
LPS индуцированная продукция IL1β пг/мл	704,61±64,32	49,52±5,92*,**	616,51±82,86	
Спонтанная продукция IL10 пг/мл	26,05±5,35	138,83±11,41*,**	43,97±9,86	
РНА индуцированная продукция IL10 пг/мл	96,81±8,34	619,20±49,31*,**	136,11±26,09	
LPS индуцированная продукция IL10 пг/мл	64,72±15,21	181,21±27,21*,**	83,35±11,42	
Спонтанная продукция IFNγ пг/мл	798,68±267,86	509,68±83,31	434,38±142,0	
РНА индуцированная продукция IFNγ пг/мл	7583,41±224,62	10311,7±137,9	7349,8±1003	
LPS индуцированная продукция IFNу пг/мл	1951,52±511,5***	760,19±65,11*	5132,8±1102,0	

Примечание: * достоверность отличий показателей группы АР в стадию обострения от показателей условноздоровых (p< 0,05) (соотношение подсчитано с учетом индивидуальных показателей);** достоверность отличий показателей группы АР в стадию обострения от показателей (р< 0,05) группы АР в стадию ремиссии (соотношение подсчитано с учетом индивидуальных показателей):*** достоверность отличий показателей группы AP в стадию ремиссии от показателей условноздоровых (p<0,05) (соотношение подсчитано с учетом индивидуальных показателей)

Исследования LPS-стимулированной выработки ИФНү выявлено статистически достоверное снижение в обеих группах в сравнении с группой контроля. При анализе спонтанной продукции провоспалительного цитокина IL1β, мы видим статистически значимое снижение спонтанной, РНА-индуцированной и LPS-стимулированной продукции в стадию обострения в сравнении со стадией ремиссии и условноздоровыми. В стадию обострения отмечается достоверное снижение спонтанной и РНА-; LPS-индуцированных продукций IL 4, при этом в сравнении с условно здоровыми спонтанная продукция снижена ~ 10 раз, при сравнении с группой ремиссии спонтанная продукция снижена в 30 раз. При определении индекса соотношения РНА- и LPS- индуцированной продукции IL 4 отмечены достоверное снижение в

сравнении с контролем. Налицо статистически достоверное повышение спонтанной, РНА-индуцированной и LPS- индуцированной продукции IL 10 в период воспаления в сравнении как со стадией ремиссии, так и с группой условно здоровых.

В период обострения у больных АР происходит активация систем, отвечающих за утилизацию аллергена (в гуморальном звене - это представлено повышением IgE, активацией фагоцитарного звена со снижением активности комплемента, связанным с его потреблением) – все это сопровождается структурной перестройкой про- и противовоспалительного цитокинового каскада. Снижается уровень IFN_γ, IL-4, IL1_β с одновременным ростом продукции IL 10 в острый период заболевания.

В период ремиссии происходит снижение общего IgE, усиление продукции IgA, снижение потребления комплемента, восстановление фагоцитарного звена иммунитета в сравнении со стадией обострения, что сопровождается функциональной перестройкой в системе цитокинов, представленной восстановлением высокого уровня IL-4, характерного для аллергических больных; высоким уровнем IL1β, восстановлением IFNγ и нормализации продукции IL 10 (как противовоспалительного цитокина).

Именно этот комплекс иммунных изменений формирует в период ремиссии стабилизацию клинической картины у пациентов и одновременно готовит иммунную систему к рецидиву обострения. Как период обострения, так и период ремиссии характеризуется своими особенностями функциональных состояний клеток иммунной системы, а распределение субпопуляций лимфоцитов имеют выраженные отличия от группы здоровых лиц.

Выводы. При изучении двух групп лиц с САР и КАР мы выявили идентичную клиническую и патоморфологическую картину. Получены различия в характере триггеров, провоцирующих обострение АР, которые ведут к формированию единого патоиммунологического симптомокомплекса, формируя изменения субпопуляционного и популяционного состава лимфоцитов и их регуляторной системы. Данные изменения зависят не столько от клинических проявлений, а сколько от стадии течения, что требует разного терапевтического подхода для этого контингента больных в фазу обострения и в фазу ремиссии.

Литература

- 1. Детская аллергология/ А.А.Баранова и др.– М.,2006.
- 2. Дранник Г.Н.Клиническая иммунология и аллергология.-М.: Изд-во МИА. – 2003.
- 3. Иммунология для врача/ С.А. Кетлинский и др.-СПб..1998.
- 4.Способ оценки функциональной активности нейтрофилов человека по реакции восстановления нитросинего тетразолия/ А.Н. Маянский и др.– Казань, 1979.
 - 5. Мейл Д. Иммунология: Пер. с англ. М., 2007.
- 6. Пальцев М.А и др. Межклеточные взаимодействия. М.,
- 7. Паттерсон Р. и др. Аллергические болезни. Диагностика и лечение: Пер. с англ.— М., 2000. 8. Pезникова Л. С. и др. Комплемент и его значение в имму-
- нологических реакция. М., 1967.
- 9. Сибиряк С.В. и др Иммунофенотипирование лимфоцитов в клинической практике. – Уфа, 1977. 10. *Тихомиров А.А.* // Лаб. дело. – 1977. – №1. – С.45–47.
- 11. Федосеев Г.Б. Аллергология. Т. 1-2. СПб: Нордмедиздат. - 2001.

УДК 616.345-006.66-072.1-089

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ЛЕЧЕНИЯ ОСЛОЖНЕННОГО РАКА ПРЯМОЙ КИШКИ

А.В. ШЕЛЕХОВ, В.В. ДВОРНИЧЕНКО, Н.И. МИНАКИН, Р.И. РАСУ-

К распространенным формам осложненного рака прямой кишки (РПК) относят опухолевый стеноз (ОС) и параканкрозное гнойно-деструктивное воспаление [1,2]. Описаны два основных подхода к лечению пациентов с РПК: хирургический метод лечения, дополняемый проведением послеоперационной лучевой

 $^{^{\}ast}$ Областной онкологический диспансер, Государственный институт усовершенствования врачей, г. Иркутск

терапии, химиотерапии [4]. Второй подход заключается в проведении на предоперационном этапе дистанционной лучевой терапии, и затем выполнение хирургического вмешательства, направленного на удаление злокачественного новообразования [8, 9]. Неоадьювантная лучевая терапия способствует снижению процента локальных рецидивов [5]. Осложненное течение РПК является противопоказанием к проведению неоадьювантной лучевой терапии [3]. Эндохирургические методы (эндоскопическая реканализация ОС, стентирование ОС толстой кишки, лапароскопическая колостомия) позволяют восстановить толстокишечный пассаж и провести неоадьювантную лучевую терапию [6, 7, 10].

Цель работы – повышение эффективности лечения пациентов, страдающих осложненным раком прямой кишки путем расширения показаний к неоадьювантной лучевой терапии.

Материалы и методы. Работа выполнена за период 1998-2006 гг. Для оценки эффективности разработанного алгоритма лечения осложненного РПК, пациентов относили к основной группе (ОГ) – 88 пациентов или группе клинического сравнения (ГКС) – 68. Критерием включения в исследование являлось наличие РПК II-III стадии, осложненного ОС. В ГКС включены пациенты, которым выполняли радикальный объем оперативного пособия и лучевую терапию в адъювантном режиме. В ОГ выполняли эндоскопические приемы коррекции толстокишечного пассажа, лучевую терапию в неоадъювантном режиме и радикальные операции. Для оценки качества лечения в обеих группах осуществляли контроль следующих показателей: частота послеоперационных осложнений, послеоперационная летальность и 5-летняя безрецидивная выживаемость.

В ГКС мужчин было 28, женщин 40. Возраст пациентов составил 61,4±1,58 года. В 26 наблюдениях установлена II стадия, в 42 - III стадия опухолевого процесса. В 13 наблюдениях стенозирующий РПК сопровождался инфекционными осложнениями (в 12 параректальным свищем, в 1 параректальным абсцессом). На первом этапе лечения пациентам ГКС выполняли радикальные операции. Спустя 3-4 недели после оперативного вмешательства проводили лучевую терапию на ложе удаленной опухоли и пути регионарного метастазирования. Удаленный препарат подвергали гистологическому исследованию. При наличии метастазов в удаленных лимфоузлах к лечению добавляли 6 курсов химиотерапии в режиме FOLFOX.

В ОГ мужчин было 41, женщин 47. Возраст – 60,1±1,42 года. В 37 случаях установлена II, в 51 – III стадия опухолевого процесса. В 22 случаях стенозирующий РПК был с инфекционными осложнениями (в 18 - с параректальным свищем, в 4 – абсцессом). При сравнении ОГ и ГКС не выявлено значимых различий при распределении пациентов по полу, возрасту, стадии заболевания (р>0,1). Лечение пациентов ОГ начинали с эндохирургической коррекции толстокишечного пассажа: временное стентирование OC (n=8), эндоскопическая комбинированная реканализация ОС толстой кишки (n=12), лапароскопическая колостомия (n=68). После восстановления толстокишечного пассажа проводили лучевую терапию опухоли и путей регионарного метастазирования. Предоперационную лучевую терапию в 20 случаях вели средним фракционированием в суммарной очаговой дозе (СОД) 44 Гр. В 68 наблюдениях выполнена дистанционная гамма-терапия динамическим фракционированием в СОД 44 Гр. Из них в 19 наблюдениях лучевая терапия дополнена радиомодификаторами (5-ФУ по 750 мг в теч. 5 дн. перед лучевой терапией и платидиам по 30 мг в течение 3 дней на фоне крупных фракций) и в 6 – химиотерапией (4 курса) в режимах FOLFIRI или XELOX. В течение 3 недель с момента завершения лучевой терапии выполняли радикальные операции. Удаленный препарат подвергали гистологическому исследованию. лечебный патоморфоз оценивали классификации Е.Ф. Лушникова (1977). При наличии метастазов в удаленных лимфоузлах к лечению добавляли 6 курсов химиотерапии в режиме FOLFOX.

Для оценки различий полученных параметрических значений применяли двухвыборочный t-тест с разными дисперсиями. Достоверность различий непараметрических данных оценивали по критерию согласия (χ^2). Анализ безрецидивной пятилетней выживаемости выполнен по методу S.Cutler – F. Ederer.

Результаты. Часто (51,5%) в ГКС выполняли обструктивные оперативные вмешательства. Брюшно-промежностная экстирпация прямой кишки выполнялась в 17,6% наблюдений. Общий процент интраоперационных и послеоперационных ослож-

нений составил 20,6%. На фоне прогрессирования послеоперационного перитонита в раннем послеоперационном периоде умер 1 пациент. Пятилетняя безрецидивная выживаемость пациентов ГКС при II стадии заболевания составила 50,2%. Пятилетняя безрецидивная выживаемость при III стадии заболевания в ГКС составила 15,2%. В ОГ распределение лечебного патоморфоза по степеням представлено в табл. 1.

Таблииа 1

Результаты исследования лечебного патоморфоза

Режимы лучевой терапии	I степень	II степень	III степень	IV степень
Среднее фракционирование (n=20)	9 (45%)	11 (55%)	-	-
Динамическое фракционирование (n=44)	17 (38,6%)	18 (40,9%)	5 (11,4%)	4 (9,1%)
Динамическое Фракционирование с радиомодификацией (n=19)		6 (31,5%)	5 (26,5%)	6 (31,5)
	P1*>0,1	P1*>0,1	P1*<0,01	P1*<0,01
Значимость различий	P2**<0,05	P2**>0,1	P2**<0,01	P2**<0,01
	P3***<0,01	P3***>0,1	P3***<0,05	P3***<0,01

P1*- значимость различий степеней лечебного патоморфоза при проведении предоперационной лучевой терапии средним фракционированием и динамическим; P2**- при проведении предоперационной лучевой терапии средним фракционированием и динамическим в сочетании с радиомодификацией; P3***- при проведении предоперационной лучевой терапии динамическим фракционированием и динамическим фотакционированием и динамическим в сочетании с радиомодификацией

Наиболее высокий процент наблюдений лечебного патоморфоза 3-4 степени определяли в группе с проведением лучевой терапии в режиме динамического фракционирования в сочетании с радиомодификацией. В группе предоперационной химиотерапии в сочетании с лучевой терапии (n=6), при исследовании удаленного макропрепарата, мы обнаружили в 3 случаях лечебный патоморфоз 3 степени (40%) и в 3 случаях – 4 степени (60%).

Таблица 2

Оперативные вмешательства, выполненные в ОГ (n=88)

	n (%)	p
Оперативный объем		
Брюшно-анальная резекция прямой кишки с низведением	32 (36,4%)	< 0.01
Брюшно-анальная резекция прямой кишки, колоанальный анастомоз	6 (6,8%)	-0,01
Обструктивная брюшно-анальная резекция прямой кишки	18 (20,5%)	< 0,01
Передняя резекция прямой кишки	18 (20,5%)	< 0,01
Обструктивная передняя резекция прямой кишки	2 (2,3%)	< 0,01
Брюшно-промежностная экстирпация прямой кишки	12 (13,5%)	<0,01

В ОГ наблюдается значимо больший процент выполнения сфинктеросохраняющих операций, достоверно уменьшается число обструктивных вмешательств (табл.2). Общий процент послеоперационных осложнений в ОГ составил 27,3% (p<0,01). В раннем послеоперационном периоде умерло 2 пациента: 1 пациент – на фоне прогрессирования перитонита, 1 пациент – от тромбоэмболии легочной артерии (p>0,1). Пациенты с проведением предоперационной химиотерапии и лучевой терапии (n=6) в подсчет пятилетней выживаемости не включались, т. к. этот метод лечения использован нами только на протяжении 2006 года. Пятилетняя безрецидивная выживаемость пациентов ОГ при II стадии заболевания составила 71,7%.

Таблииа 3

Сравнительный анализ безрецидивной выживаемости ОГ И ГКС при II стадии заболевания

Интервал (годы)	Показатели выживаемости ГКС (n=26)		Показатели выживаемости ОГ (n=37)		Значение критерия Стьюдента	Достоверность различий
	Выживаемость		Выживаемость	m		0.1
0-1	0,960	3,84	1,000	0	1,04	p>0,1
1-2	0,640	9,41	0,962	3,14	3,25	p<0,01
2-3	0,579	9,68	0,962	3,14	3,76	p<0,01
3-4	0,502	9,80	0,797	6,61	2,61	p<0,05
4-5	0,502	9,80	0,717	7,40	1,98	p<0,05

Показатели безрецидивной выживамости не имеют достоверных различий в исследуемых группах только на 1 году наблюдения, в остальные сроки наблюдения показатели

выживаемости достоверно выше в ОГ пациентов. Пятилетняя безрецидивная выживаемость при III стадии заболевания у пациентов ОГ составила 33,6%.

Таблииа 6

Безрецидивная выживаемость пациентов ГКС и ОГ при III стадии заболевания

Интервал (годы)	Показатели выживаемос ГКС (n=42) Выживаемость	ги)	Показатели выживаемост ОГ (n=46) Выживаемость	ги	Значение критерия Стьюдента	Достоверность различий
0-1	0,880	5,00	0,978	2,20	1,96	p<0,05
1-2	0,533	7,60	0,831	5,50	3,21	p<0,01
2-3	0,342	7,31	0,585	7,26	2,43	p<0,05
3-4	0,239	6,58	0,432	7,30	2,01	p<0,05
4-5	0,152	5,53	0,336	6,96	2,27	p<0,05

Значения выживаемости пациентов ОГ при III стадии заболевания, на всем протяжении наблюдения значимо больше в ОГ по сравнению с контролем (p<0,01; p<0,05).

Выводы. Эндохирургические технологии позволяют в короткий срок восстановить пассаж по толстой кишке и расширить показания к предоперационной лучевой терапии. Предоперационная лучевая терапия при РПК увеличивает 5летнюю безрецидивную выживаемость. Оптимальный метод лучевой терапии – режим динамического фракционирования с радиомодификацией. Предоперационное химиолучевое лечение увеличивает степень лечебного патоморфоза.

Литература

- 1. Александров В.Б. Рак прямой кишки. М.: Вузовская книга. - 2001.
- 2. Ан В.К. Неотложная проктол. М.: Медпрактика. 2003. 3. Воробьев Г.И.и др. // Эндоскопическая хирургия. – 1996. – № 4.- C. 16.
 - 4.*Федоров В.Д.* Рак прямой кишки М.: Медицина. 1987. 5.*Camma C. et al.* // JAMA 2000. N 284. P. 1008–1015.
- 6. Eckhauser M.L. //Surg. Clin. North Am.— 1992.— Vol. 72, $N_{0}3 - P = 597 - 607$
- 7. Ely C.A., Arregui M.E. //J. Surg. Endosc. 2003. Vol. 17, No1 - P 89-94
 - 8. *Giuliani D. et al.* Acta Chir Belg. 2006. № 1. P.40–43. 9. *Vetter C.//* MMW Fortschr Med. 2003. №145. P.41–43
- 10. Wasvary H. et al. // Dis Colon Rectum.- 2003.- Vol.46,

УДК, 617.481.1+617.089.5+616.242.07+612.12

ЗНАЧИМОСТЬ ТЕСТА ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ ЭНЕРГИИ ТАК-СИСА ЛЕЙКОЦИТОВ КРОВИ ДЛЯ ДИАГНОСТИКИ И ОЦЕНКИ КЛИ-НИЧЕСКОГО ТЕЧЕНИЯ НОЗОКОМИАЛЬНЫХ ПНЕВМОНИЙ, АССО-ЦИИРОВАННЫХ С ИСКУССТВЕННОЙ ВЕНТИЛЯЦИЕЙ ЛЕГКИХ У БОЛЬНЫХ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМОЙ

М.С.КАМНЕВ, И.Г.ПАЩЕНКО

Нозокомиальные пневмонии (НП) являются второй по частоте внутрибольничной инфекцией в индустриально развитых странах. Проблема развития, диагностики и профилактики НП посвящено достаточно большое количество научных работ, обзоров литературы и методических рекомендаций [1-5]. Острая травматическая болезнь головного мозга сопровождается развитием вторичного иммунодефицита, следствием которого являются инфекционные осложнения со стороны органов дыхания, встречающиеся у 39,5% больных, из которых основной причиной летального исхода была пневмония [6].

Больные с черепно-мозговой травмой (ЧМТ) в большинстве случаев нуждаются в искусственной вентиляции легких (ИВЛ), которая сама по себе является серьезным фактором риска развития нозокомиальной пневмонии (НПивл) [1]. Установлено, что частота развития $H\Pi_{\text{ИВЛ}}$ во многом зависит от длительности периода ИВЛ. В группах больных с ИВЛ >10 суток НПивл развивалась очень часто, из которых многие больные погибали [7-12]. Высокие показатели летальности больных НПивл обусловлены тем, что у них имелись тяжелые осложнения и сопутствующие

заболевания. При этом трудно определить атрибутивную летальность, т.е. летальность непосредственно связанную с НПивл [5]. В диагностике и оценке тяжести НПивл, наряду с другими критериями обязательным является учет лейкоцитоза крови. При этом надо учитывать функциональное состояние лейкоцитов. В периферической крови основную массу клеток белого ростка составляют нейтрофилы, которые наряду с моноцитами и лимфоцитами являются основными эффекторными клетками воспаления. С давних лет оценка функционального состояния нейтрофилов проводилось по их фагоцитарной способности, т.е. на основании результатов исследования 2-й фазы фагоцитоза.

В 1991 г. в работе [13] представлена методика оценки функционального состояния лейкоцитов, основанная на определении величины их энергии таксиса (ЭТЛ), отражающей 1-ю фазу фагоцитоза. Единицей измерения величины ЭТЛ является Джоуль (Дж). При НП_{ивл} таких исследований не проводилось.

Цель работы - определение величины ЭТЛ для диагностики НПивл у больных ЧМТ, поскольку в условиях микстпатологии по объективным причинам она чрезвычайно затруднена.

Материал и методы. Исследования были проведены у 174 больных, которые были разделены на 4 группы. В первую (ОГ) группу вошло 58 больных молодого и среднего возраста, находившихся в отделении реанимации и интенсивной терапии (ОРИТ), которым для коррекции функции дыхания проводилась ИВЛ (средняя продолжительность 10,7±1,7 дня).

С тяжелой закрытой ЧМТ, с ушибом головного мозга и различными формами внутричерепных гематом наблюдалось 45 больных. У больных этой группы в разные сроки от ЧМТ диагностировалась бронхопневмония (48 больных) и плевропневмония (10 больных). Чаще НПивл относилось к поздним (≥5 суток). В этиологии пневмоний, по данным микробиологического исследования трахеобронхиального аспирата, ведущее положение занимали золотистый стафилококк (20,7%), различные штаммы стрептококка (10,1%), дрожжевые грибы (15,2%), синегнойная палочка (12,9%) и др. Летальность составила 49,5%.

Три другие группы больных представляли собой группы сравнения, поскольку по объективным причинам в условиях микстпатологии трудно оценить вклад влияния пневмонии на величину ЭТЛ. 2-ю группу составили 15 больных с различными формами ЧМТ, у которых НПивл в течение всего периода наблюдения исключалась. В 3-ю группу вошло 48 больных с внебольничными пневмониями молодого и среднего возраста, находившихся на стационарном лечении в пульмонологическом отделении больницы. Диагноз бронхопневмонии ставился 37 больным, плевропневмонии 11. Легкое течение заболевания наблюдалось у 14 больных, среднетяжелое – 12, тяжелое 22. В 4-ю группу были включены 53 больных с острыми нарушениями мозгового кровообращения (ОНМК) среднего и пожилого возрастов, находившихся на лечении в неврологическом отделении больницы. В структуре ОНМК преобладающим был ишемический вариант (40 больных), геморрагический и смешанный варианты – у 13 больных. Во всех группах диагноз основного заболевания, его осложнений и сопутствующих заболеваний ставился на основании результатов комплексного обследования. К диагностическому процессу привлекались специалисты по профилю заболеваний.

Величина ЭТЛ периферической крови определялась по методике Т.Ф.Шевченко и А.Б.Пескова в динамике наблюдения за больными от 2 до 5 раз. ЭТЛ отражает среднюю величину энергии затраченной лейкоцитом на спонтанный таксис с момента взятия крови до его остановки определяемой in vitro. У здоровых людей (110 доноров станции переливания крови различного пола и возраста) средняя величина ЭТЛ составила 3,33±0,33·10⁻¹⁴Дж. Результаты проведенных исследований сопоставлялись также с уровнем периферического лейкоцитоза, СОЭ, С-реактивного белка, содержанием фибриногена в крови, лейкоцитарного индекса интоксикации (ЛИИ) в модификации В.К.Островского [11]. Обработка результатов исследований производилась по прикладным программам Statistica 6,0 for Windows с последующим анализом полученных данных, включающих параметрические и непараметрические методы. При p<0,05 результаты исследований считались достоверными на 0,95%, а при p<0,001 вероятность достоверности составляла 99,5%. Анализ корреляционных связей проводился по Спирмену и Фишеру.

Результаты. В ОГ на 2-3 день лечения в ОРИТ средняя величина ЭТЛ по сравнению таковой у здоровых повысилась незначительно (р>0,05) (табл. 1). Однако уже при следующем ис-

 $^{^*}$ Ульяновский ГУ, Институт медицины, экологии и физкультуры 432063, г. Ульяновск, ул. К. Либкнехта, 1