Состояние системы цитохрома Р-450 3А4 у больных острым инфарктом миокарда

А.Г. Владимиров¹, В.Г. Кукес², Д.А. Андреев³

¹ГУЗ Госпиталь для ветеранов войн №3; ²Институт клинической фармакологии ФГУ "НЦ ЭСМП" Росздравнадзора; ³Московская медицинская академия им. И.М. Сеченова. Москва, Россия

Cytochrome P-450 3A4 system in patients with acute myocardial infarction

A.G. Vladimirov¹, V.G. Kukes², D.A. Andreev³

¹War Veterans Hospital No 3; ²Clinical Pharmacology Institute, Research Center for Medical Substances Expertise; ³I.M. Sechenov Moscow Medical Academy, Moscow, Russia

Цель. Определить особенности функционирования системы СҮРЗА4 в остром периоде инфаркта миокарда (ИМ), ее связь с клинико-лабораторными показателями.

Материал и методы. В исследование были включены 50 пациентов, госпитализированных в первые 24 часа острого инфаркта миокарда с подъемом сегмента ST (ИМпST). (МЕGX) — Тест моноэтилглицинэксилидида проводили сразу после поступления пациента, до назначения терапии, на 4-5 и 14 сутки заболевания.

Результаты. Исходный уровень MEGX оказался достоверно выше в группе неосложненного течения ИМ $(132,1\pm16,85\ \text{нг/мл})$, чем в группе пациентов с симптомами сердечной недостаточности (СН) $(31,9\pm2,02\ \text{нг/мл};\ p<0,001)$ и группе здоровых добровольцев $(63,6\pm14,01\ \text{нг/мл};\ p<0,001)$. Прием фенобарбитала достоверно повышает активность СҮР 3A4 в обеих группах пациентов с ИМ.

Заключение. Активность системы CYP 3A4 в остром периоде ИМпST угнетена у пациентов при наличии признаков острой CH. Это связано с развитием у пациентов этой группы признаков повреждения печени (ишемического и застойного характера). При ИМпST возможно проведение фармакологической стимуляции CYP 3A4.

Ключевые слова: моноэтилглицинэксилидид, СҮР 3А4, инфаркт миокарда, сердечная недостаточность, фенобарбитал.

Aim. To investigate CYP 3A4 system functioning and its clinico-laboratory correlations in acute myocardial infarction (AMI).

Material and methods. The study included 50 patients hospitalized in the first 24 hours of AMI with ST segment elevation (STE-AMI). Monoethylglycinexylidide (MEGX) test was performed at the hospital admission, at Day 4-5 and Day 14.

Results. Baseline MEGX level was significantly higher in non-complicated AMI group $(132,1\pm16,85 \text{ ng/ml})$ than in patients with heart failure (HF) symptoms $(31,9\pm2,02 \text{ ng/ml}; p<0,001)$ or healthy volunteers $(63,6\pm14,01 \text{ ng/ml}; p<0,001)$. Phenobarbital administration significantly enhanced CYP 3A4 activity in both AMI groups.

Conclusion. In AMI, CYP 3A4 system activity was suppressed among patients with acute HF symptoms. This could be explained by ischemic and congestive liver disturbances. In STE-AMI, pharmacological CYP 3A4 stimulation is possible.

Key words: Monoethylglycinexylidide, CYP 3A4, myocardial infarction, heart failure, phenobarbital.

Введение

Основными группами препаратов в лечении инфаркта миокарда с подъемом сегмента ST (ИМпST) являются тромболитические средства, нитраты, наркотические анальгетики, антикоагулянты и антиагреганты, β -адреноблокаторы (β -АБ),

ингибиторы ангиотензин-превращающего фермента (ИАПФ), статины, антагонисты альдостерона [4]. Для лечения осложнений ИМ в отделениях интенсивной терапии применяются диуретики, антибактериальные и противогрибковые препараты, антиаритмические средства разных классов, инотропные. Как правило, пациент с ИМпST

©Коллектив авторов, 2008 e-mail: drvl@mail.ru тел.: 8 (916) 505-95-90

получает препараты несколько групп. Метаболизм подавляющего большинства из них происходит в печени

Биотрансформацию лекарств принято делить на 2 фазы. В результате реакций 1 фазы (окисление, восстановление, гидролиз) происходит превращение исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы. В реакциях 2 фазы (конъюгация) на образовавшиеся активные центры молекулы присоединяются эндогенные соединения (глюкуроновая кислота, глутатион, сульфат и т.д.) [3].

1 фаза является "лимитирующей" стадией процесса биотрансформации. Наибольшую роль в реакциях 1 фазы играет цитохром (СҮР) Р-450 и его изоферменты. Цитохромы подсемейства 3A составляют 30% от всех изоферментом Р-450 в печени и 70% всех изоферментов стенки желудочно-кишечного тракта [17]. Среди изоферментов подсемейства 3A фундаментальную роль в метаболизме более чем половины всех назначаемых лекарственных препаратов играет СҮРЗА4. Многие из субстратов СҮРЗА4 одновременно могут изменять его функциональную активность [2].

Выделяют группу препаратов-индукторов системы СҮРЗА4 (карбамазепин, глюкокортикоиды, фенобарбитал, рифампицин, фенитоин и т.д.) и более многочисленную группу препаратов-ингибиторов системы СҮРЗА4. К наиболее важным представителям относятся макролиды, кетоконазол и другие средства этого ряда, циметидин и ранитидин, омепразол, многие противовирусные лекарства, фторхинолоны, дилтиазем и пр.

К ингибиторам системы CYP3A4 относится сок грейпфрута [5].

Наиболее важными субстратами СҮР 3A4, применяемыми в лечении ИМпST, являются клопидогрел, статины, антагонисты альдостерона (спиронолактон, эплеренон), амиодарон, антагонисты кальция (АК), варфарин [9,11,16,18-20].

Для изучения активности системы СҮРЗА4 используется тест, основанный на определении содержания в крови главного активного метаболита лидокаина — моноэтилглицинэксилидида (МЕСХ) [1,12]. Результаты теста комплементарны показателям общепринятых в клинике тестов функции печени и несут, в т.ч. прогностическую информацию [8,10,14]. Наиболее важны результаты МЕСХ-теста в отделениях интенсивной терапии. У пациентов в критических состояниях быстрое снижение показателей МЕСХ-теста ассоциируется с повышенным риском полиорганной недостаточности и неблагоприятным прогнозом. Кроме того, низкие результаты теста могут быть связаны с выраженным воспалительным ответом.

Задачами настоящего исследования явились определение активности CYP3A4 у пациентов, госпитализированных по поводу ИМпST в первые сутки от начала заболевания, выявление влияющих на нее факторов и возможностей фармакологической стимуляции СҮРЗА4. Это даст важные дополнительные возможности прогнозирования эффективности и безопасности используемых препаратов, оптимизации терапии ИМ.

Материал и методы

В исследование были включены 50 пациентов, поступивших в блок интенсивной терапии в первые 24 ч от развития острого крупноочагового ИМ.

Критерии включения:

- Мужчины или женщины в возрасте 20-69 лет.
- Пациенты должны были отвечать критериям острого ишемического события, установленным Европейским обществом кардиологов и определяемым как наличие 2 из 3 следующих признаков:
- ишемическая боль в грудной клетке или ее эквивалент в покое продолжительностью > 10 мин;
- изменения на электрокардиограмме (ЭКГ), зафиксированные в течение 24 ч от начала события, по крайней мере, в 2 смежных отведениях: транзиторный или персистирующий подъем сегмента ST > 1 мм;
- изменения активности кардиомаркеров: 2-кратное и более повышение в крови выше верхней границы нормы активности фракции МФ креатинфосфокиназы (МВ-КФК) или повышение в крови выше верхней границы нормы уровня тропонина.
- От начала ишемического события до момента включения в исследование должно пройти не более 24 ч.

Все <u>критерии исключения</u> из исследования были разделены на несколько групп.

- Обшие:
- отказ пациента от участия в исследовании;
- любые заболевания (помимо сердечно-сосудистых) и обстоятельства, которые могут помешать участию в исследовании или значительно ограничивают возможную выживаемость (метастатический рак);
- беременные женщины (тест на беременность должен быть отрицательным) или женщины репродуктивного возраста, не соблюдающие методы контрацепции;
 - кормление грудью;
- участие в другом клиническом исследовании в настоящее время;
 - предыдущее участие в этом исследовании.
 - Критерии, связанные с состоянием сердца:
- выраженная брадикардия < 50 уд/мин и\или интервал PR > 280 мс на последней ЭКГ в 12 отведениях;
- серьезное поражение синусового узла (зарегистрированные по ЭКГ монитору паузы асистолии длительностью ≥ 3 с);
 - атриовентрикулярная блокада 2-3 степеней;
- необходимость экстренной постановки электрокардиостимулятора;
- наличие на момент возникновения симптомов острого ИМ (ОИМ) признаков хронической сердечной недостаточности (ХСН) III-IV функциональных классов (ФК) по классификации Нью-йоркской ассоциации сердца (NYHA);
- признаки кардиогенного шока при поступлении и необходимость в терапии инотропными средствами (признаками кардиогенного шока являлись стойкое в течение > 30 мин снижение систолического артериаль-

 Таблица 1

 Основные демографические и клинико-инструментальные показатели пациентов при поступлении

	I группа – пациенты с неосложненным ОИМ (n=26)	II группа – пациенты с осложненным ОИМ (n=24)
Средний возраст, лет	51,6±1,9	52,4±2,0
Пол:		
-мужской, п	26	23
-женский, n	_	1
Средняя ФВ ЛЖ, %	53,5±1,0	40,3±1,2***
Сердечный индекс, л/мин • мІ	$3,03\pm0,09$	2,61±0,08**
Клиренс креатинина, мл/мин	90,06±5,20	61,41±4,30***
Курение, п	18	15
ИМ в анамнезе, n	2	12
ГЛП, n (%)	14 (53,9)	11 (45,9)
AΓ, n (%)	18 (69,3)	20 (83,4)
Ожирение, п (%)	8 (30,8)	7 (29,2)
СД, n (%)	3 (11,6)	2 (12,4)
Время от начала симптомов ИМпST до поступления, ч	7,4±0,9	10,8±0,9
Рост, м	$1,78\pm0,01$	1, 76±0,01
Вес, кг	85,1±2,6	84,7±2,5
САД, мм рт.ст.	126,5±3,1	124,1±4,4
ДАД, мм рт.ст.	78,3±2,4	80,4±2,8
АЛТ крови, ЕД/л	38,9±3,8	149,1±39,7**

Примечание: *** – p<0,001; ** – p<0,01; ГЛП – гиперлипидемия; АГ – артериальная гипертония; СД – сахарный диабет.

ного давления (САД) < 90 мм рт.ст. и признаки органной гипоперфузии);

- признаки отека легких, не купирующегося введением петлевых диуретиков;
 - синдром Вольфа-Паркинсона-Уайта;
- планируемые обширные операции на сердце или других органах, коррекция клапанного порока, аортокоронарное шунтирование в течение последующих 14 дней.
- Критерии, связанные с состояние других органов и систем:
- наличие в анамнезе аллергических реакций на лидокаин;
- тяжелые хронические заболевания печени (хронический гепатит, цирроз печени).
 - Отклонения от нормы лабораторных показателей:
- клиренс креатинина < 30 мл/мин (рассчитанный по формуле Cockroft-Gault: клиренс креатинина = (140-возраст [годы]) масса тела [кг] константа / креатинин [мкмоль/л], где константа составляет 1 для мужчин и 0,85 для женщин).
 - Сопутствующая терапия:
- болюсное внутривенное (в/в) введение лидокаина в предыдущие 2 ч или введение препарата другими способами в/в инфузия, внутримышечно (в/м) или подкожно (п/к) в предыдущие 8 ч до включения в исследование (срок в 8 ч равен 5 периодам полувыведения лидокаина);
- предыдущее использование других антиаритмических препаратов в пределах их 5 периодов полувыведения (амиодарон 120 дней (д), дизопирамид 3 д, прокаинамид 2 д, пропафенон 2 д, хинидин 2 д, соталол 3 д);
- применение пациентом на момент включения препаратов, влияющих на активность системы СҮР 3А4.

Пациентам при поступлении выполняли общее клиническое обследование, общий и биохимический анализы крови, рентгенографию грудной клетки, эхокардиогра-

фию (ЭхоКГ) с определением фракции выброса левого желудочка (ФВ ЛЖ). Для оценки степени выраженности СН использовалась классификация Killip T 1967.

Все пациенты с ИМпST были разделены на 2 группы: I группа (n=26) — пациенты с неосложненным течением ОИМ, II группа (n=24) — пациенты с ОИМ, осложненным СН.

Основные показатели больных представлены в таблице 1.

У пациентов II группы при поступлении отмечались признаки острой сердечной недостаточности (ОСН): Killip T, II — у 5 человек (20,9%), Killip T, III — у 19 (79,1%).

В отделении пациенты получали тромболитическую терапию стрептокиназой или проурокиназой при наличии показаний, антикоагулянтами, антиагрегантами, статинами, β -AБ, ИАПФ, мочегонными.

МЕGX-тест проводили сразу после поступления пациента, до назначения терапии. Лидокаин вводили в/в в течение 1-2 мин из расчета 1 мг/кг, разведенный в 5 мл физиологического раствора. На 30 мин с момента инъекции выполняли повторные заборы крови из вены, отличной от места введения лидокаина. Концентрация MEGX определяли методом высокоэффективной жидкостной хроматографии. Повторно MEGX оценивали на 4-5 сутки заболевания.

Дизайн исследования представлен на рисунке 1.

С 4-5 суток пациенты каждой из групп делились на 2 подгруппы. Одна подгруппа получала стандартную терапию ИМпST. Пациентам другой подгруппы к стандартной терапии был добавлен фенобарбитал в составе препарата "Валокордин". Повторное, третье определение MEGX выполняли на 14 сутки заболевания.

При статистической обработке результатов использовали методы для малых выборок.

Традиционно вычисляли показатели описательной статистики с определением следующих величин:

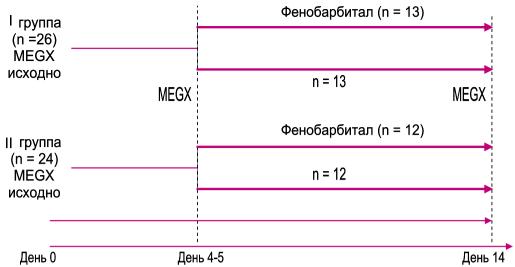


Рис. 1 Дизайн исследования.

Таблица 2
Показатели MEGX исходно и на 4-5 сутки заболевания

Величины	MEGX, нг/мл при неосложненном течении ИМпST (n=26)	MEGX, нг/мл при осложненном течении ИМпST (n=24)	ГК MEGX, нг/мл (n=13)
1 сут.	132,1±16,85	31,9±2,02***	63,6±14,01***
4-5 сут.	131±16,0	35,6±2,05***	-

Примечание: *** – p<0,001.

число наблюдений (n), среднее арифметическое (M), среднее квадратичное отклонение (σ), средняя ошибка средней арифметической (m), минимальное и максимальное значения изучаемого признака, коэффициент вариации.

Достоверность различий между изучаемыми выборками по анализируемому показателю оценивали общепринятым образом по t-критерию Стьюдента. Надежность критерия обозначали символом p- для критерия Стьюдента. Различия считали достоверными при p < 0.05.

При обработке полученных результатов использовали программное обеспечение по статистическим методам Excel 5.0 для персональных компьютеров и компьютерную программу STATISTICA 6.0.

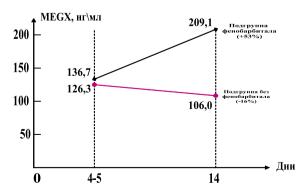
Результаты

Для сравнения был определен показатель MEGX у 13 мужчин — здоровых добровольцев. Средний возраст группы контроля (ГК) достоверно не отличался от такового у пациентов с ИМпST и составил $52,7\pm0,9$ лет, сердечный индекс (СИ) $2,75\pm0,05$ л/мин • м², достоверно ниже СИ в группе неосложненного течения ИМпST (p<0,05).

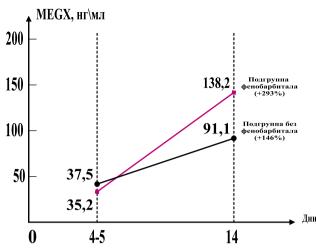
В таблице 2 представлены показатели MEGX обеих групп и ГК в сравнении. Исходный уровень MEGX оказался достоверно выше в группе неосложненного течения ИМ, чем во II группе и ГК. В группе осложненного течения ИМпST показатель оказался достоверно ниже такового в ГК.

В обеих группах при сравнении средних значений MEGX исходно и на 4-5 сут. заболевания

разница между средними значениями оказалась статистически недостоверной.


Динамика показателей MEGX в группе неосложненного течения под влиянием приема фенобарбитала показана на рисунке 2.

Разница между уровнями MEGX на 4-5 д и 14 сут. в подгруппе фенобарбитала статистически достоверна (p<0,05).


В подгруппе без фенобарбитала статистически достоверная разница между MEGX на 4-5 и 14 сут. отсутствовала.

При сравнении уровень MEGX на 14 сут. в подгруппе фенобарбитала оказался статистически достоверно выше такового в подгруппе без фенобарбитала (p<0,001).

Динамика показателей MEGX в группе осложненного течения ИМпST представлена на рисунке 3.

Puc. 2 Динамика уровня MEGX при назначении фенобарбитала у пациентов с неосложненным течением ИМпST.

Puc. 3 Динамика уровня MEGX при назначении фенобарбитала у пациентов с осложненным течением ИМпST.

Разница между уровнями MEGX на 4-5 д и на 14 сут. в подгруппе приема фенобарбитала оказалась статистически достоверной (p<0,001).

В подгруппе, не получавшей препарат, разница между MEGX на 4-5 и 14 сут. также была статистически достоверной (p<0,001).

При сравнении уровень MEGX в подгруппе фенобарбитала был статистически достоверно выше такового в подгруппе без него (p<0,001).

В подгруппах фенобарбитала концентрация MEGX на 14 сут. оказалась достоверно выше в группе с неосложненным течением ИМ (p<0,001). В подгруппах пациентов без фенобарбитала статистически достоверная разница между группами на 14 сут. отсутствовала.

Обсуждение

При остром ИМ, вследствие нарушений печеночного кровотока и возникающей органной гипоксии, в печени могут происходить динамические изменения метаболизма и окислительно-восстановительных процессов. Неизбежно в процесс вовлекается система СҮРЗА4. В генезе нарушений кровоснабжения печени имеют значение снижение сократительной способности миокарда, атеросклеротическое поражение печеночных сосудов, расстройства микроциркуляции. Основным гумо-

ральным фоном таких изменений является гиперкатехоламинемия в остром периоде ИМ.

В настоящем исследовании показано, что активность системы СҮР 3А4 в остром периоде ИМпSТ угнетена у пациентов при наличии признаков ОСН. Это связано с развитием у пациентов этой группы признаков повреждения печени ишемического и застойного характера, что подтверждается повышенным содержанием аланинаминотрансферазы (АЛТ) в крови.

Несмотря на возможность миокардиального происхождения части АЛТ в клинической практике ее активность остается общедоступным признаком при определении повреждения печени [7,15]. Считают, что доступным биохимическим маркером повреждения печени является повышение уровня АЛТ в крови, сохраняющееся в течение более чем 48 ч от начала симптомов ИМпST [6].

У пациентов с неосложненным течением ИМпST результаты теста оказались выше нормальных, что, вероятно, обусловлено гиперсимпатикотонией в острейшем периоде ИМ. Наличие повышенной симпатической активности в остром периоде у этих пациентов подтверждается достоверно более высокими показателями сердечного индекса, чем в ГК.

Выводы

Прием фенобарбитала достоверно повышает активность СҮР 3A4 в обеих группах пациентов с ИМ. Таким образом, при ИМпST возможно проведение фармакологической стимуляции СҮР 3A4.

У пациентов с неосложненным течением ИМпST, не принимавших фенобарбитал, средний уровень MEGX на 14 сут. оказался меньше исходного, что может быть связано с нормализацией тонуса симпатической нервной системы.

У пациентов 2 группы, не принимавших фенобарбитал, средний уровень MEGX на 14 сут. повысился и достиг уровня нормального. Это связано со стабилизацией состояния пациентов и регрессией признаков СН.

Проведение MEGX-теста позволяет оптимизировать лечение ИМ, прогнозировать лекарственные взаимодействия и возможные побочные эффекты терапии.

Литература

- 1. Применение MEGX-теста для оценки активности изофермента цитохрома 3-450 3A4. Методические рекомендации. Москва 2004.
- 2. Метаболизм лекарственных препаратов. Под ред. акад. РАМН проф. В.Г.Кукеса. Москва "Палея-М" 2004.
- 3. Клиническая фармакология под ред. акад. РАМН, проф. Кукеса В.Г. Москва "ГЭОТАР-МЕД" 2004.
- 4. Braunwald's Heart disease: A textbook of Cardiovascular Medicine, 7th edition, Elsevier Saunders. Philadelphia 2006.
- 5. Bailey DG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs 2004; 4: 281-97.
- 6. Giesen PL, Peltenburg HG, de Zwaan C, et al. Greater than expected alanine aminotransferase activities in plasma and in hearts of patients with acute myocardial infarction. Clin Chem 1989; 35(2): 279-83.
- 7. Гузеева В.А. Патология печени при инфаркте миокарда. Кардиология 1977; 17(1): 119-23.
- 8. Halkin H, Meffin P, Melmon KL, Rowland M. Influence of congestive heart failure on blood vessels of lidocaine and its active monodeethylated metabolite. Clin Pharmacol Ther 1975; 17: 669-76.
- 9. Hayashi M. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post infarction left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. J Cardiol 2004; 43: 88-91.
- 10. Igonin AA, Armstrong VW, Shipkova M, et al. The monoethylexilidide (MEGX) test as a marker of hepatic dysfunction in septic patients with pneumonia. Clin Chem Lab Med 2000; 38: 1125-8.

- 11. Maxa JL, Melton LB, Ogu CC, et al. Rhabdomyolysis after concomitant use of cyclosporine, simvastatin,gemfibrosil and intraconazole. Ann Pharmacother 2002; 36: 820-3.
- 12. Narang PK, Grouthamel WG, Carliner NH, Fisher ML. Lidocaine and its active metabolites. Clin Pharmacol Ther 1978; 24: 654-62.
- 13. Neubauer H, Mugge A. Thienopyridines aand statins: assessing a potential drug-drug interaction. Curr Pharm Des 2006; 12: 1271-80.
- 14. Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit 2001; 23: 81-92.
- 15. Oostenbrock RJ, Willems GM, Boumans ML, et al. Luver damage as a potential source of error in the estimation of myocardial infarct size from plasma creatine kinase activity. Cardiovasc Res 1985; 19(2): 113-9.
- 16. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348(14): 1309-21.
- 17. Plant NJ, Gibson GG. Evaluation of the toxicological relevance of CYP3A4 induction. Curr Opin Drug Discov Devel 2003; 6: 50-6.
- 18. Ucar M, Mjorndat T, Dahlqvist R. HMG-CoA reductase inhibitors and myotoxicity. Drug Saf 2000; 22: 441-57.
- 19. Willims D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmakokinet 2002; 41: 343-70.
- 20. Yamreudeewong W, DeBisschop M, Martin LG, Lower DL. Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Saf 2003; 26: 421-38.

Поступила 26/02-2008