

В.М. ДЕЛЯГИН, д.м.н., профессор, **Е.А. ТИХОМИРОВА**, к.м.н., **Ю.В. ДЕМИДОВА**, ФБГУ «Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии»

СИНДРОМ УДЛИНЕННОГО ИНТЕРВАЛА QTc

Синдром удлиненного интервала QTc — врожденное или приобретенное состояние удлинения электрической систолы левого желудочка, выявляемое при записи электрокардиограммы и обусловленное нарушением ионных каналов с предрасположенностью к развитию жизнеугрожающих полиморфных желудочковых аритмий. Истинная распространенность синдрома среди населения России не известна. Важна роль своевременного выявления этого синдрома и адекватной лечебной тактики.

Ключевые слова: ЭКГ, интервал QТс, педиатрия, ранняя диагностика

индром удлиненного интервала QTc (У-QTc) — врожденное или приобретенное состояние удлинения электрической систолы левого желудочка (ЛЖ), выявляемое при записи электрокардиограммы, обусловленное нарушением ионных каналов с предрасположенностью к развитию жизнеугрожающих полиморфных желудочковых аритмий (пируэт, torsades de pointes) [1, 2, 3]. В качестве диагностического критерия рассматривается корригированная по формуле Базетта [4] величина длительности QТс в 0,44 с и более. По этой формуле QTc является частным от деления длительности интервала ОТ на корень квадратный длительности интервала RR (c). Соотношение QT к RR должно быть повторяющимся. Это особенно важно при частоте сердечных сокращений менее 50/мин или более 120/мин, а также у детей или спортсменов с выраженной вариабельностью интервала RR. В этих случаях требуется длительная регистрация ЭКГ и многочисленные измерения. Наиболее длительный интервал QT фиксируется в правых прекардиальных отведениях [5].

Указанная рубежная величина тем не менее может быть причиной ложноположительной диагностики У-QTc.

Таблица 1. Риск кардиальных катастроф (потеря сознания, остановка сердца, внезапная смерть) в зависимости от генотипа и длительности QTc

Риск	QTc в покое	Генотип	Пол
D	0,5	LQT1	м/ж
Высокий (> 50%)	0,5	LQT2	м/ж
(> 50 %)	0,5	LQT3	М
	0,5	LQT3	М
Средний	< 0,5	LQT2	ж
(30-49%)	< 0,5	LQT3	ж
	< 0,5	LQT3	М
Низкий	< 0,5	LQT2	М
(< 30%)	< 0,5	LQT1	м/ж

Одновременно у 6% пациентов с молекулярно-подтвержденным У-QTc и клинически манифестными аритмиями удлинения QTc нет [6].

Почти у половины пациентов с У-QTс имеются приступы потери сознания, что поднимает проблему до уровня междисциплинарной [7]. Такие больные обращаются к разным специалистам, зачастую первыми являются педиатры и терапевты. Поэтому информированность широкого круга специалистов крайне важна для своевременной диагностики и, соответственно, ранней и адекватной терапии.

ВРОЖДЕННОЕ УДЛИНЕНИЕ ИНТЕРВАЛА ОТС

По данным зарубежных ученых, частота У-QTс составляет 1:2 500—1:10 000 живорожденных [8, 9]. Истинная распространенность синдрома может быть выше, учитывая возможность латентного течения У-QTс приблизительно в 11% случаев. Распространенность в нашей популяции не известна. 60—70% случаев У-QTс обнаруживаются у женщин. Это объясняется, видимо, тем, что интервал QTс изначально у женщин длиннее, чем у мужчин, и накоплением женщин в когорте больных: смертность мальчиков — носителей синдрома в возрасте до 10 лет выше, чем смертность девочек с такой же патологией в этой же возрастной группе. В последующем показатели смертности не имеют гендерных различий.

В число детей с удлиненным интервалом QTc входят и дети с т. н. латентным, скрытым или У-QTc с нормальной длительностью QTc при наличии генетической отягощенности. В большинстве случаев, кроме изменения интервала QTc, есть и изменение формы волны Т. Поэтому стратификация по степени риска (табл. 1, 2) включает в себя удлинение интервала QTc, морфологию волны Т, пол пациента и молекулярно-генетические изменения [6, 10, 11]. У пациентов с синдромом Жервелла и Жервелла — Ланг-Нильсена (JLN) синдромом, который рассматривается в пределах У-QTc, с раннего детства, несмотря на проводимое лечение, риск нарушений ритма и внезапной смерти выше, чем у пациентов с синдромом LQT [12].

В семейном анамнезе отмечаются случаи необъяснимой внезапной смерти молодых людей (до 30 лет), эпизоды выпадения сознания (воспринимаемые как судорожные припадки), периоды мышечной слабости вплоть до падения, относительная брадикардия и врожденная глухота. Иногда уже у плода регистрируются атриовентрикулярные блокады или синусовая брадикардия.

Для пациентов с У-QTс характерны обмороки, которые могут ошибочно трактоваться как вазовагальные. В норме при переходе из горизонтального положения в вертикальное интервал QT укорачивается вследствие возникающей физиологической симпатикотонии и синусовой тахикардии. Но у пациентов с У-QTс при таком маневре физиологическая симпатикотония выступает как тригтер: интервал QT удлиняется, возрастает вероятность аритмий. То есть ортостатические обмороки у пациентов с У-QTc могут свидетельствовать о более серьезных расстройствах, чем вазовагальные обмороки [13].

При ЭКГ-диагностике У-QTс, наряду с изменениями длительности интервала QT, оценивают характеристики волны Т. Видимая альтернация волны Т (изменение формы, вольтажа, инверсия) у пациентов с У-QTс — показатель высокого риска фибрилляции желудочка или torsade de pointes. Микровольтажная альтернация вольны Т, выявляемая по

специальным компьютерным программам, — высокоспецифичный, но низкочувствительный признак У-QTс. Прогностическое значение микровольтажной альтернации волны Т не известно. Выявлена связь между морфологией волны Т и типом У-QTс. Широкая волна Т чаще регистрируется при варианте LQT1, расщепленная — при варианте LQT2, нормальная волна Т с длинным изоэлектрическим сегментом ST — при варианте LQT3.

Согласно международным стандартам выделяют большие и малые клиникоЭКГ-критерии У-ОТ.

- К большим критериям отнесены:
- удлинение интервала QTc более 440 мс на ЭКГ покоя;
- стресс-индуцированные синкопе;
- случаи выявления удлинения интервала QT в семье.
- Малые критерии:
- врожденная глухота;
- низкая ЧСС:
- альтернация волны Т.

Синдром диагностируется при наличии двух больших или одного большого и двух малых критериев [14]. Алгоритм диагностики синдрома удлиненного QТс и врачебной тактики представлен на рисунке 1.

Не каждое небольшое удлинение QTc рассматривается как патологическое, требующее генетических исследований.

Тип синдрома	Ген	Белок	Локус	Примечание
LQT1	KCNQ1 (гетерозиготы, калиевый канал)	KvLQT1 (Kv7.1)	11p15.5	Триггер: стресс, физические нагрузки
LQT2	КСNH2 (калиевый канал)	hERG (Kv11.1)	7q35-36	Триггер: шум
LQT3	SCN5A (натриевый канал, описаны 50 мутаций)	Nav1.5	3p24-p21	Триггер: сон, покой. Большое число мутаций обуславливает самые разнообразные клинические презентации синдрома, в т. ч. и синдром Бругада
LQT4	ANK2 (натриевый, калие- вый и кальциевый каналы, описаны 5 мутаций)	Анкерин-В	4q25-q27	?
LQT5	КСNE1 (калиевый канал, гетерозиготы)	MinK	21q22	Часть пациентов — носители синдрома Жервелла — Ланг-Нильсена (а/р. Врожденная внутренняя тугоухость или глухота, синкопе вплоть до смертельного исхода при физической нагрузке, удлинение QTc без электролитных нарушений с чередованием мерцания и трепетация желудочков [torsades de points])
LQT6	КСNE (калиевый канал)	MiRP1	21q22	Триггер: медикаменты
LQT7	КСNJ2 (калиевый канал)	Kir2.1	17q23	Часть пациентов — носители синдрома Андерсен — Таули (а/д, периодический паралич, микрогнатия, низкопосаженные уши, клинодактилия)
LQT8	CACNA1C (кальциевый канал)	Cav1.2	12p13.3	Часть пациентов — носители синдрома Тимоти (а/д. Аутизм, синдактилия, дизморфизм, аномалии сердца, множественный ранний кариес, гипотермия, гипогликемия, частые инфекции)
LQT9	CAV3 (натриевый канал)	Кавеолин 3	3p25.3	Мутация CAV3 ответственна и за мышечные заболевания
LQT10	SCN4B (натриевый канал)	Navb4	11q23.3	Крайне редкое состояние. Описано около 5 семей
LQT11	АКАР9 (калиевый канал)		7q21-q22	
LQT12	SNTAI (натриевый канал)			
JLN1	KVLQT1 или KVLQ (калие- вый канал, гомозиготы)		11p15.5	
JLN2	КСNE1 (гомозиготы)		21q22-22.1	

Врачебная тактика при У-QTc строится в зависимости от степени удлинения, клинической картины, изменения волны Т.

- 1. Бессимптомный пациент с У-QTc 0,44—0,46 с. При отсутствии семейных случаев У-QTc или необъяснимых смертей в возрасте младше 30 лет, отсутствии у пациента обмороков, врожденной глухоты, периодической мышечной слабости, аутизма определяют позицию интервала ST и морфологию волны Т. При нормальной морфологии волны Т минимум в 3 отведениях при 12-канальной ЭКГ с поверхностным наложением электродов (лучше при суточном мониторировании) исследование повторяют через 3—4 недели. Если при повторном исследовании по-прежнему нет отрицательных изменений, диагноз У-QTc снимается. Вероятность последующей манифестации У-QTc при указанных условиях значительно ниже 1:1 000 [15].
- 2. Бессимптомный пациент с У-QTс 0,47 с и более. При длительности QTс 0,47 с и более, альтерации волны Т, инцизуре на волне Т по меньшей мере в 3 отведениях можно говорить о дополнительных критериях синдрома У-QTс. Серьезным вспомоществованием в диагностике является суточное мониторирование ритма с последующим анализом длительности интервала QT и волны Т. При наличии более 4 пунктов по шкале Schwartz [16] вероятность синдрома У-QTc очень велика, что настоятельно требует молекулярно-генетического анализа. Генетическое исследование 5 наиболее частых генов ионных каналов (LQT1 LQT3, LQT5, LQT6) позволяет выявить 3/4 всех случаев У-QTc.
- Пациент с синкопальными или пресинкопальными состояниями и У-QTc < 0,47 с. Симптомные пациенты с длительностью QTc < 0,47 с должны быть оценены по шкале Schwartz (табл. 3). Учитывается семейный анамнез, наличие обмороков, склонность к брадикардии, глухота, мор-

Контроль ЭКГ.

При измененной волне Т

пробы с нагрузкой или

адреналином

- фология волны Т [16]. При наличии 4 пунктов показано молекулярно-генетическое исследование. Возможны и диагностические фармакологические пробы с адреналином или изопротеренолом, но они чреваты жизнеугрожающими нарушениями ритма сердца и могут быть проведены в исключительных случаях только в условиях палаты интенсивной терапии. Если при суточном мониторировании ритма сердца не выявлено соответствующих нарушений, возможно более длительное мониторирование [17]. При наличии молекулярно-генетических вариантов LQT1 и LQT2 вероятность осложнений не зависит от пола пациента. Вариант LQT3 протекает неблагоприятно у девочек и женщин [10].
- 4. У детей с клиническими признаками описываемого синдрома и длительностью QTc 0,47 с и более при условии отсутствия медикаментозного влияния есть все основания говорить о У-QTc. Длительное лечение основывается на назначении β-блокаторов (например, пропранолол в дозе 3 мг/кг).

ЛЕЧЕНИЕ

Рекомендуется воздержаться от занятий спортом, т. к. физическая активность, плавание, стрессовые эмоции провоцируют осложнения У-QТс. Провоцирующий эффект физических нагрузок и тахикардии и, соответственно, защитный эффект β-блокаторов зависят от типа У-QТс. Физическая нагрузка, тахикардия, плавание и ныряние — основные триггеры внезапной смерти при LQT1. LQT2 тоже провоцируется нагрузками, но в меньшей степени, чем LQТ1. Физические нагрузки и тахикардия не влияют на манифестацию LQТ3. Типичные нарушения ритма случаются, как правило, во сне. Поэтому и дискутируется целесообразность назначения

Медикаментозное лечение.

Водитель ритма

при брадикардии.

При необходимости

дефибрилляция

 Интервал QТс

 < 0,47 с</td>
 0,47 с и более

 3 и менее баллов по шкале Schwartz
 Более 3 баллов по шкале Schwartz

 Генотип не известен/норма
 Генотип +/

54

Медикаментозное

лечение

Медикаментозное

лечение

β-блокаторов для предотвращения нарушений ритма. Для лечения пациентов с LQT3 обсуждается целесообразность приема мексилетина, блокатора натриевых каналов как монотерапии, так и в сочетании с β-блокаторами [5]. Но среди пациентов с LQT3 высока доля детей, не реагирующих на назначение блокаторов натриевых каналов [18, 19].

С целью предупреждения кардиальных катастроф исключаются такие препараты, как адреналин, антигистаминные средства, эритромицин, триметоприм, хинидин, прокаинамид, дизопирамид, соталол и другие, цизаприд, кетоконазол, флюконазол, интраконазол, трициклические антидепрессанты, производные фенотиазина, галоперидол, индапамид и другие диуретики.

По международным рекомендациям [20, 21] препаратом выбора являются β-блокаторы. В этом ряду первым препаратом является пропранолол. Дозы препаратов подбираются индивидуально, ориентируясь на получаемый ответ. Антиадренергическая терапия эффективна у большинства детей с У-QTc, снижая риск аритмий и уменьшая длительность интервала QT. Следует предупредить родителей, что перерыв в приеме β-блокаторов чреват кардиальными осложнениями.

Ответ на β-блокаторы и мексилетин зависит от типа мутации и триггерных факторов. В частности, мексилетин у людей с синдромом LQTS3 с мутацией протеина F1473 усугубляет дальнейшее удлинение QT [22]. При синдроме LQT1 β-блокаторы эффективны, если провоцирующими факторами выступают физические нагрузки, но не эффективны, если нарушения ритма случаются во сне [23].

Экстренная терапия нацелена на предотвращение эпизодов torsades de pointes и внезапной смерти и включает в себя исключение провоцирующих агентов, внутривенное введение растворов калия, магния, реже — изопротеренола [24].

У пациентов с частыми жизнеугрожающими нарушениями ритма [25], подвергавшихся лечению дефибриллятором, группы высокого риска по внезапной смерти возможно применение имплантированного кардиовертера/дефибриллятора (водителя ритма) и/или удаление левого шейного звездчатого узла (симпатическая денервация).

Приобретенный синдром удлиненного QTc рассматривается как побочное действие многих состояний и препаратов. Приобретенное удлинение QTc встречается при электролитных нарушениях, субарахноидальных кровоизлияниях, ишемии миокарда, безбелковом питании, вегетативной ней-

Таблица 3. Шкала Schwartz по диагностике синдрома удлиненного ОТс

ı	J-	
	экг	
	QТс-интервал более 480 мсек	3 балла
	QTc-интервал 460—470 мсек	2 балла
	QTc-интервал 450 мсек (мальчики)	1 балл
	Torsades de points	3 балла
	Альтернирующая Т-волна	1 балл
ı	Инцизура на волне Т не менее чем в 3 циклах	1 балл
ı		1 00/1/1
	Брадикардия (ЧСС ниже 2 перцентили)	0,5 балла
	Брадикардия (ЧСС ниже 2 перцентили)	
	Брадикардия (ЧСС ниже 2 перцентили) Обмороки	0,5 балла
	Брадикардия (ЧСС ниже 2 перцентили)	0,5 балла 2 балла
	Брадикардия (ЧСС ниже 2 перцентили)	0,5 балла 2 балла

Трактовка результатов

Необъяснимая смерть у родственника

1 балл и меньше —

низкая вероятность синдрома удлиненного интервала QTc 2—3 балла —

в возрасте до 30 лет

средняя вероятность синдрома удлиненного интервала QTc 4 балла и выше —

высокая вероятность синдрома удлиненного интервала QTc

ропатии (например, при сахарном диабете), употреблении кокаина, отравлении фосфорорганическими соединениями. Для педиатров особое значение имеют антибиотики (например, макролиды) и некоторые антиаритмические средства (например, амиодарон). В то же время есть мнение, что препараты выступают только как провокаторы ЭКГ-манифестации уже имеющихся генетически обусловленных расстройств в ионных каналах [2]. Факторами риска медикаментозно спровоцированного У-QTс являются предшествующая брадикардия, женский пол, гипокалиемия, гипомагниемия, гипотермия, пороки сердца, болезни щитовидной железы.

ЗАКЛЮЧЕНИЕ

Синдром удлиненного QTc может быть жизнеугрожающим состоянием. Истинная распространенность синдрома среди населения России не известна. Требуется внимание всего педиатрического сообщества в деле своевременного выявления этого синдрома и адекватной лечебной тактики.

ЛИТЕРАТУРА

- 1. Nader A. Inherited arrhythmic disorders // Texas Heart Inst. Journal, 2007, v. 34. 67-75.
- Schmidt B., Sreeram N., Brockmeier K. Verlängerung des QTc-Intervalls im Oberflächen-Ekg // Pädiatrische Praxis, 2009. – Bd. 73. – ss. 279–286.
- Чупрова С.Н. Клинико-генетический полиморфизм синдрома удлиненного интервала QT у детей и дифференцированная тактика их лечения. Автореф. дис. к.м.н. — М., 2007 — 35 с.
- 4. Collins K., VanHaare G. Advances in congenital long QT syndrome // Current Opinion Pediatr., 2006. v. 18. pp. 497—502.
- 5. Sovari A. Long QT Syndrome. http://emedicine.medscape.com. Updated 5 April 2012.
- 6. Brockmeier K. T-wave alternans in LQTS: repolarization-rate dynamics from 12-lead Holter data // Journal of Electrocardiology, 2001. v. p. 93—94.

Полный список литературы вы можете запросить в редакции.