Симпатическая нервная система, ожирение и артериальная гипертензия. Возможности терапии

А.О. Конради

ФГУ «Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова Росмедтехнологий», Санкт-Петербург

Ожирение и активность симпатической нервной системы

настоящее время существуют убедительные доказательства независимой связи активности симпатической нервной системы (СНС) с ожирением, а также участия данной системы в патогенезе артериальной гипертензии (АГ) при ожирении. Не менее 40 исследований было посвящено изучению активности СНС при ожирении, в которых суммарно было показано, что концентрация норадреналина плазмы у больных ожирением выше, чем в контрольной группе [1]. В крупном популяционном исследовании (Normative Aging Study) было отмечено, что суточная экскреция норадреналина у больных ожирением существенно выше, чем у лиц с нормальной массой тела [2]. Известно также, что снижение массы тела сопровождается уменьшением экскреции норадреналина [3]. Позднее было показано, что имеются органные особенности активации СНС при ожирении. В частности, симпатическая импульсация к почке при ожирении повышена, по крайней мере, в два раза в сравнении с лицами с нормальной массой тела [4-5], кроме этого имеются признаки гиперфункции симпатических нервов, иннервирующих кожу и скелетные мышцы [6-7]. Однако импульсация к сердцу у лиц с ожирением без $A\Gamma$ не только не увеличена, но составляет около 50% от таковой у здоровых лиц [4-5]. Однако при сочетании с артериальной гипертензией (АГ) имеется повышение симпатической импульсации к сердцу более чем в два раза в сравнении с тучными пациентами без АГ и на 25% от нормы [5]. В более поздних работах этих же авторов было выявлено, что ассоциация ожирения и артериальной гипертензии не только усиливает симпатическую активацию, но и сопровождается нарушениями барорецепторного рефлекса [8].

Поскольку только центральное (андроидное) ожирение является фактором риска сердечно-сосудистой патологии и компонентом метаболического синдрома, то логично предположить, что характер распределения жировой ткани может иметь значение для имеющихся изменений вегетативной регуляции.

Группой Grassig в 2004 г. [9] были получены данные о том, что центральное (андроидное) ожирение характеризуется более выраженным повышением тонуса СНС в сравнении с периферическим, что не было связано с полом и с изменением барорефлекторных механизмов регуляции, но зато было четко ассоциировано с более выраженной инсулинорезистентностью. Незадолго до этого продемонстрирована корреляция между нейрональной симпатической активностью и количеством висцерального жира [10].

Механизмы повышения активности **СНС** и артериального давления при ожирении

Патогенетические взаимоотношения между ожирением и активностью СНС чрезвычайно сложны. Само наличие такой взаимосвязи бесспорно, однако механизмы повышения активности СНС при ожирении остаются малоизвестными. Гипотеза Ландсберга [11] (1986) предполагает то обстоятельство, что ожирение сопровождается инсулинорезистентностью, будучи результатом как простого переедания, так и предсуществующих особенностей организма, выражающихся уменьшением способности к термогенезу и в целом низким уровнем метаболизма. Уровень метаболизма напрямую связан с количество поступающих калорий с пищей. Пищевой термогенез направлен на увеличение расхода калорий в случае переедания, тогда как при голодании и ограничении калорий происходит снижение уровня основного обмена. Развитие инсулинорезистентности направлено на стабилизацию массы тела, с одной стороны, ограничивая отложение жира и, с другой стороны, увеличивая активность СНС, что ведет к увеличению термогенеза. Иными словами, инсулинорезистентность есть механизм, направленный на ограничение дальнейшего нарастания массы тела. Согласно данной точке зрения, артериальная гипертензия, ассоциированная с ожирением, представляет собой нежелательное следствие активации механизмов восстановления нормального энергетического гомеостаза при ожирении.

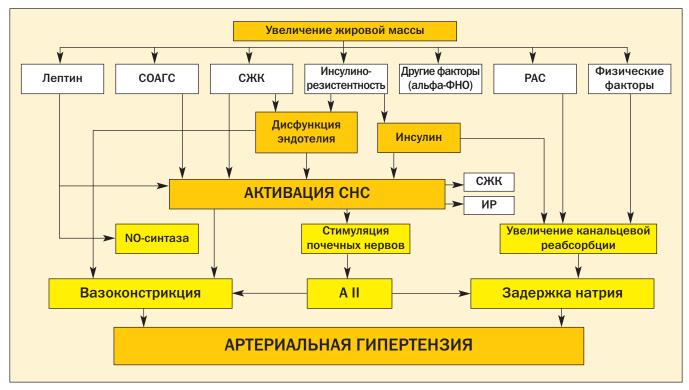


Рис. 1. Патогенез артериальной гипертензии при ожирении

Эта гипотеза подкреплена целым рядом научных фактов. Во-первых, голодание у экспериментальных животных сопровождается понижением активности симпатической нервной системы [11]. Помимо этого, ограничение калоража в питании крыс линии SHR ведет к снижению артериального давления (АД), и, напротив, избыточное питание сопровождается ростом АД до 10%. Высокожировая диета приводит не только к развитию ожирения у собак, но и к гиперинсулинемии и артериальной гипертензии, т.е. формированию модели метаболического синдрома [12]. Переедание у человека также сопровождается увеличением симпатической импульсации [13]. Важно, что характер изменения активности вегетативной нервной системы у человека аналогичен таковому описанному Lansberg L. [11] у экспериментальных животных и включает повышение симпатической импульсации к почкам и скелетной мускулатуре.

Патогенез артериальной гипертензии при ожирении чрезвычайно сложен, но его основной составляющей, так или иначе, является повышение активности СНС (рис. 1). В целом современные представления основываются на том, что все основные факторы, продуцируемые жировой тканью и имеющие отношение к повышению АД, способствуют активации СНС (лептин, свободные жирные кислоты, инсулин). Одним из ведущих механизмов повышения АД при ожирении и соответствующей гиперактивности СНС является активация почечных симпатических нервов [14]. Помимо гиперактивности СНС к усилению реабсорбции натрия может приводить активация РАС, прямое действие инсулина, а также увеличение чисто механической нагрузки на внутрипочечную гемодинамику [1]. Инсулинорезистентность и дисфункция

эндотелия, ассоциированные с ожирением, усугубляют вазоконстрикторные реакции, вызванные симпатической активацией.

Большой вклад в прогипертензивный и просимпатический эффекты ожирения вносит гормон лептин, вырабатываемый адипоцитами.

Жировая ткань по современным представлениям активно участвует в регуляции аппетита, активности прессорных и депрессорных систем, метаболизме жиров и углеводов. Количество известных гормонов и биологически активных веществ, самостоятельно вырабатываемых жировой тканью постоянно увеличивается. Основным из них сегодня считаются лептин, фактор некроза опухолей альфа, ангиотензиноген, адипонектин и резистин. Именно лептину отводится ведущая роль в осуществлении участия жировой ткани в регуляции параметров гемодинамики и активности СНС.

Уровень лептина повышен при ожирении, что потенциально ведет к увеличению активности СНС и повышению АД. В целом физиологическая роль лептина еще находится в стадии изучения. Интересно, что у лиц с ожирением, но дефицитом лептина, что наблюдается крайне редко, имеются низкие уровни АД, что косвенно подтверждает роль лептина в развитии АГ [15]. Высокий уровень лептина у больных ожирением предполагает наличие у этой категории пациентов лептинорезистентности, которая касается лишь метаболических эффектов данного гормона, т.е. является селективной. Гиперлептинемия в сочетании с селективной лептинорезистентностью может иметь непосредственное отношение к задержке жидкости, АГ, гипертрофии сердца и сосудистой стенки и аритмиям у больных ожирением, что реализуется посредством гиперактивности СНС.

Классическая гипотеза участия гиперинсулинемии в патогенезе артериальной гипертензии при метаболическом синдроме основана на представлении об активации СНС [16]. АГ и гиперинсулинемия тесно соседствуют друг с другом. Возможно наличие гиперинсулинемии и инсулинорезистентности у пациентов с АГ даже при нормальной массе тела. Инсулину приписывается вазоконстрикторный эффект за счет симуляции СНС, в первую очередь в скелетной мускулатуре. Показана непосредственная роль инсулина в регуляции СНС [17]. При этом следует иметь в виду, что инсулин обладает и вазодилататорным действием, опосредованным рецепторами на эндотелии, вызывая в норме инсулинзависимую вазодилатацию. При АГ и ожирении этот баланс сдвигается в сторону преобладания вазоконстрикции.

Считается, что СНС также является существенным звеном патогенеза инсулинорезистентности. Катехоламины стимулируют гликогенолиз и глюконеогенез в печени и ингибируют высвобождение инсулина из β-клеток поджелудочной железы, одновременно нарушая периферическую утилизацию глюкозы скелетными мышцами. Инсулинорезистентность ведет к разрушению триглицеридов и выходу свободных жирных кислот. Как следствие этого, в печени ускоряется синтез триглицеридов и их конвертация в липопротеины очень низкой плотности (ЛПОНП). СЖК еще более угнетают высвобождение инсулина из β-клеток и усугубляют нарушение толерантности к глюкозе. Помимо эффектов на уровне печени, β-клеток поджелудочной железы симпатической активации отводится роль в ухудшении периферического кровотока и ухудшении доставки энергетических субстратов в ткани. В работе Masuo K. и соавт. [18] было показано, что уже за 10 лет до повышения артериального давления происходит первоначальное повышение активности СНС, но не уровня инсулина (1997). Косвенным доказательством роли СНС в развитии инсулинорезистентности является ее усугубление при лечении бетаблокаторами и уменьшение на фоне альфа-блокаторов [19]. Но существует и обратный процесс, а именно стимуляция симпатической активности в результате гиперинсулинемии.

Инсулинорезистентность при ожирении также относительно гетерогенна (селективна) (см. рис. 2). Важно, что больные ожирением инсулинорезистентны в отношении потребления глюкозы в скелетной мускулатуре, но не имеют инсулинорезистентности в аспекте действия инсулина в ЦНС и активации СНС [20]. Косвенным доказательством участия инсулина в патогенезе АГ при ожирении является то, что при снижении уровня инсулина путем ограничения калорий, или остро при введении соматостатина происходит как снижение активности СНС, так и падение АД [21–22].

Гипотеза участия симпатической нервной системы в происхождении компонентов метаболического синдрома была высказана достаточно давно. Сегодня имеются доказательства того, что увеличение активности СНС в ответ на ряд стимулов, по крайней мере, частично модулируется центральными механизмами с вовлечением гипоталамо-гипофизарной системы

(ГГС) [23]. Не исключается, что в основе вегетативных нарушений при метаболическом синдроме лежит барорефлекторная дисфункция [24].

Ряд исследований свидетельствует о возможной роли некоторых новых пептидов в развитии сердечно-сосудистой патологии при ожирении. Так, с артериальной гипертензией ассоциирован низкий уровень грелина [25] (Poykko S., 2003) и адипонектина [26] (Iwashima Y., 2004). Грелин и адипонектин могут участвовать в регуляции артериального давления через различные механизмы, включая изменение активности симпатической нервной системы. Соотношение гормонов щитовидной железы (Т3/Т4) тесно связано с потреблением калорий, особенно углеводов. Оно быстро нарастает при еде и снижается при голодании [13]. Не исключается, что повышение активности СНС во время еды связано с изменением активности гормонов щитовидной железы, что, однако, требует проверки.

Не исключается также участие системы эндорфинов в модуляции симпатической активности при ожирении [27]. Опиоидные агонисты в этой ситуации могут выступать как модуляторы активности СНС [28].

Синдром обструктивных апноэ во сне, ожирение и активность СНС

Множество других факторов может способствовать активации СНС при ожирении. Среди них в последние годы ведущее место отводится синдрому обструктивных апноэ/гипопноэ во сне (СОАГС). Синдром обструктивного апноэ/гипопноэ во сне (СОАГС) встречается по разным данным у 4—25% мужчин и 2—4% женщин, соответственно, при этом наиболее часто нарушения дыхания во сне наблюдаются у пациентов в возрасте от 45 до 65 лет [29].

Обструктивные апноэ/гипопноэ характеризуются повторными эпизодами прекращения дыхания во время сна вследствие коллапса глотки при сохраненных движениях дыхательной мускулатуры и сопровождается снижением насыщения крови кислородом. В настоящее время СОАГС рассматривается как самостоятельный фактор риска сердечно-сосудистых осложнений, и в 1998 г. Ян Вилкокс предложил объединить СОАГС с другими известными факторами риска и преобразовать метаболический синдром Х в синдром Z [30]. Среди основных механизмов влияния СОАГС на развитие метаболических нарушений и АГ рассматривается повышение активности СНС вследствие эпизодов гипоксии и гиперкапнии во время сна и частых пробуждений [31-33]. Повышение активности СНС у больных с СОАГС также подтверждается данными клинических исследований с использованием микронейрографии симпатических нервов, оценки вариабельности сердечного ритма и измерением концентрации катехоламинов в плазме крови и моче [31]. При этом в некоторых исследованиях было отмечено уменьшение активности СНС на фоне патогенетического лечения СИПАП-терапией в течение 6 месяцев [34].

Существует мнение, что наличие синдрома обструктивных апноэ объясняет повышение актив-

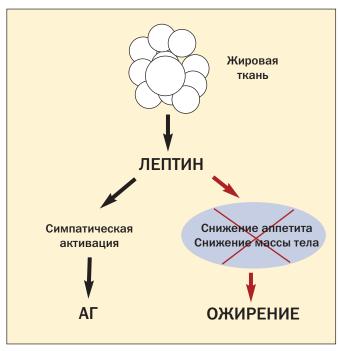


Рис. 2. Концепция селективной лептинорезистентности

ности СНС при ожирении [35]. Оно основывается на том, что вне синдрома апноэ активность СНС при ожирении остается нормальной. В то же время некоторые авторы предполагают, что, напротив, повышение активности СНС у больных с нарушением дыхания во сне связано с сопутствующим ожирением. Однако, по данным популяционных исследований, больные с СОАГС характеризуются значительно большей мышечной симпатической активностью и суточной экскрецией метанефринов с мочой, по сравнению с сопоставимыми по массе тела пациентами без нарушений дыхания во сне [33]. Более того, у больных с СОАГС повышение активности СНС сохраняется и в течение дня, когда эпизодов апноэ и гипоксии не возникает [33].

Собственные данные свидетельствуют о том, что у пациентов с СОАГС значения низкочастотного компонента спектра ВСР и симпатовагального индекса, в большей степени отражающих активность симпатической нервной системы, были выше, по сравнению с пациентами без нарушений дыхания во сне $(317,8\pm34,8$ и $251,3\pm23,0$, $p=0,0001; 2,5\pm0,8$ и $1,9\pm0,5$, p=0,01, соответственно). При анализе подгрупп по степени тяжести нарушений дыхания во сне было установлено, что значение низкочастотного компонента спектра возрастает с увеличением тяжести синдрома обструктивных апноэ/гипопноэ во сне (KW=13,17, p=0,001).

Нами также показано, что у больных с СОАГС имеется повышение уровня инсулина в плазме крови натощак по сравнению с контрольной группой ($25,8\pm6,3$ и $15,7\pm6,9$ мкЕд/мл, соответственно; p=0,001). При оценке связи с другими компонентами метаболического синдрома у пациентов с СОАГС установлена ассоциация низкочастотного компонента спектра ВСР с уровнем инсулина в плазме крови, уровнем С-реактивного белка (r=0,422, p=0,001;

r=0,388, p=0,02, соответственно), а также параметрами суточного мониторирования АД.

Уровень лептина в сыворотке крови был выше у больных с СОАГС по сравнению с контрольной группой ($36,6\pm9,4$ и $23,3\pm7,7$ нг/мл, соответственно; p=0,01). При корреляционном анализе у пациентов с СОАГС установлена связь уровня лептина с индексом апноэ/гипопноэ (r=0,475, p<0,0001). Также обращала на себя внимание связь уровня лептина со значением низкочастотного компонента спектра при спектральном анализе вариабельности сердечного ритма в покое у больных с нарушением дыхания во сне (r=0,506, p=0,001).

Таким образом, собственные данные свидетельствуют о том, что у пациентов с нарушениями дыхания во сне, ожирением и АГ наблюдается более значимое повышение активности симпатической нервной системы по сравнению с больными без СОАГС. Повышение активности симпатической нервной системы ассоциировано с индексом апноэ/гипопноэ, гемодинамическими параметрами, уровнем инсулина и лептина, что может говорить о роли СОАГС в развитии различных компонентов метаболического синдрома.

Лечение артериальной гипертензии у больных ожирением

Принимая во внимание четкую связь между активацией СНС, АГ, ожирением и метаболическими нарушениями, очевидно, что изменение образа жизни у этой категории больных является наиболее принципиальным аспектом лечения и приводит к существенному снижению уровня риска атеросклеротических осложнений. Снижение массы тела и регулярные аэробные физические нагрузки доказано способствуют снижению уровня АД, уменьшению инсулинорезистентности и уменьшению проявлении гиперактивности СНС у больных с АГ и ожирением.

В отношении медикаментозного лечения артериальной гипертензии у больных ожирением и метаболическими нарушениями, включая больных с так называемым метаболическим синдромом, существует две принципиально различные точки зрения [36]. Одна их них придерживается концепции отсутствия каких-либо преимуществ у отдельных классов антигипертензивных препаратов в лечении АГ, основываясь на тезисе о преимущественной роли снижения АД в уменьшении уровня риска у больных с АГ. Другая точка зрения, которая в последние годы становится все более обоснованной, предполагает выбор лекарственных препаратов для таких пациентов с учетом сопутствующих метаболических нарушений, а также с учетом возможной динамики массы тела на фоне терапии.

Бета-блокаторы и диуретики являются наиболее «старыми» из антигипертензивных препаратов, и их эффекты, в том числе метаболические, изучены достаточно хорошо. При этом хорошо известно, что длительное применение обоих классов лекарственных препаратов сопровождается усугублением инсулинорезистентности и дислипидемии, повы-

Таблица
«Кандидатные» лекарственные препараты для лечения ожирения
Препараты, действующие на уровне ЦНС
Сибутрамин
Аналоги лептина
Агонисты рецепторов к меланокортину 2 и 4
Аналоги гастроинтестинального пептида
Аналоги пептида ҮҮ
Антагонисты грелина
Агонисты рецепторов к холецистокинину
Агонисты соматостатиновых рецепторов
Панкреатический амелин
Антидепрессанты
Противоэпилептические средства
Препараты, влияющие на всасывание пищи — орлистат
Препараты, повышающие энерготраты
Агонисты бета-подтипа рецепторов к тиреоидным гормонам
Агонисты бета-3-адренорецепторов
РРРО-агонисты

шением риска развития сахарного диабета, а использование бета-блокаторов — прибавкой массы тела [37]. При этом следует иметь в виду, что негативные метаболические эффекты не являются строго класс-специфичными и существенно уменьшаются при применении высокоселективных бетаблокаторов. Отсутствие метаболических побочных эффектов доказано также для карведилола. В целом, несмотря на известные негативные моменты, большинство международных рекомендаций не отрицает возможности применения бета-блокаторов у лиц с ожирением, метаболическими изменениями с учетом их высокой активности в плане снижения уровня риска и необходимости применения при назначении многокомпонентной терапии.

Антагонисты кальция считаются нейтральными относительно эффектов на метаболические параметры и могут успешно использоваться при АГ и ожирении при наличии клинических показаний.

Ингибиторы АПФ и антагонисты рецепторов к ангиотензину II в последние годы обсуждаются как препараты, напротив, способные предотвратить развитие сахарного диабета [37, 38]. Их преимущества обсуждаются в основном в аспекте противовоспалительных эффектов, уменьшения инсулинорезистентности, а также опосредованного и прямого действия на активность СНС. В настоящее время можно считать доказанным лишь снижение риска развития сахарного диабета при применении блокаторов рецепторов к ангиотензину II. Ряд работ свидетельствует о понижении активности СНС при применении этих групп препаратов, но клиническое значение этого эффекта не доказано. Для ряда антагонистов рецепторов к ангиотензину II описано прямое действие на РРР рецепторы. Считается при этом, что при их назначении не происходит нарастания массы тела, свойственного этому истинным РРКуагонистам, что, однако, требует дальнейшего изучения.

Современные симпатолитики – агонисты имидазолиновых рецепторов: возможности в лечении АГ, ассоциированной с ожирением

Открытие имидазолиновых рецепторов в мозге и почке млекопитающих привело к быстрому внедрению молекул, связывающихся селективно с этими сайтами, и предположению об их успешном терапевтическом применении. Появление моксонидина и рилменидина совместно с развитием исследований роли СНС в патогенезе АГ, инсулинорезистентности и других факторов риска, привело к настоящему «ренессансу» антигипертензивных средств центрального действия. Этому в большой степени способствовала существенно лучшая переносимость новых препаратов в сравнении с неселективными α_2 -агонистами.

Применение этого класса антигипертензивных препаратов патогенетически оправдано у пациентов с АГ, ассоциированной с ожирением и метаболическими нарушениями исходя из изложенной выше концепции роли гиперактивности СНС в развитии этого комплекса патологий.

Впервые позитивные эффекты на метаболизм глюкозы были продемонстрированы в экспериментальных исследованиях. В частности, назначение как моксонидина [39], так и рилменидина [40] предотвращало развитие инсулинорезистентности у крыс, находящихся на диете, богатой фруктозой. В последующем в клинических условиях было показано снижение уровня глюкозы плазмы на фоне моксонидина [41]. Далее уже в двойном слепом исследовании было выявлено снижение инсулинорезистентности на фоне 8 недель лечения моксонидином в дозе 0,2 мг [42]. Аналогично, терапия рилменидином в дозе 1-2 мг в сутки в течение 12 недель привела к снижению уровня глюкозы в сравнении с метилдопой (UK Working Party on rilmenidine, 1990), а также у больных сахарным диабетом [43].

На кафедре факультетской терапии СПбГМУ им. акад И.П. Павлова под руководством В.А. Алмазова было выполнено пилотное исследование по оценке инсулинорезистентности на фоне терапии моксонидином [44]. Его результаты, касающиеся положительной динамики площади под кривой глюкозы во время перорального теста на толерантность к глюкозе, послужили основой для планирования многоцентрового исследования ALMAZ, выполненного в 2002-2003 гг. Исследование ALMAZ проводилось как многоцентровое проспективное открытое исследование с продолжительностью наблюдения больных в течение 16 недель. Целью исследования ALMAZ, названного в честь академика РАМН В.А. Алмазова (Санкт-Петербург, Российская Федерация), было проведение сравнительной оценки влияния моксонидина и метформина на показатели чувствительности к инсулину и уровни глюкозы в крови у взрослых больных гипертонической болезнью с ожирением и нарушениями толерантности к глюкозе (по данным перорального теста толерантности к глюкозе) или сахарным диабетом в легкой форме. В исследование

были включены 202 пациента в 10 Российских центрах, которые после рандомизации были разделены на две равные группы, в одной из них больные получали моксонидин в дозе 0,2 мг два раза в день, в другой — метформин в дозе 500 мг два раза в день [45]. В качестве основного критерия эффективности терапии использовался показатель площади под кривой уровня инсулина в плазме крови (ППК инсулина) при проведении перорального теста толерантности к глюкозе через 16 недель после начала лечения. В отношении первичной точки (ППК инсулина) моксонидин продемонстрировал существенное снижение (p=0.025) в сравнении с исходным значением, чего не наблюдалось в группе, получавшей метформин, что привело к статистически значимым различиям между группами в 16,2% (95% CI=0,1-35,0). Изменения ППК инсулина были наиболее существенны в подгруппе больных с повышением активности СНС (ЧСС более 80 уд. в минуту). Средние уровни глюкозы и гликированного гемоглобина почти не изменились на фоне терапии моксонидином и существенно уменьшились при терапии метформином. Различия между группами составили 14,7% (р=0,0523). По окончании исследования в обеих группах наблюдалось снижение индекса чувствительности к инсулину (в группе моксонидина за счет уменьшения гиперинсулинемии при углеводной нагрузке, в группе метформина – за счет снижения уровня глюкозы натощак). Уровень АД и индекс массы тела достоверно уменьшились в обеих группах. Переносимость препаратов была хорошей.

Позитивные метаболические эффекты рилменидина были также продемонстрированы в сравнении с амлодипином и каптоприлом — препаратами, традиционно считающимися оптимальными у больных с метаболическими нарушениями [46, 47]. Недавно было опубликовано исследование, выполненное на пациентах с метаболическим синдромом [48], в котором показаны позитивные эффекты рилменидина в сравнении с лизиноприлом. Моксонидин в этом аспекте сравнивался также с антагонистом кальция амлодипином [49]. В этом исследовании было показано улучшение показателей теста толерантности к глюкозе, уменьшение уровня лептина и катехоламинов плазмы на фоне лечения агонистом имидазолиновых рецепторов в сравнении с антагонистом кальция.

С точки зрения патогенеза инсулинорезистентности и гиперинсулинемии, препараты, уменьшающие гиперактивность симпатической нервной системы, могут оказывать благоприятные эффекты. Агонисты имидазолиновых рецепторов зарекомендовали себя как препараты, обладающие способностью снижать активность СНС и, соответственно, способствовать улучшению показателей углеводного и липидного обмена, в том числе у больных ожирением и другими метаболическими нарушениями.

В отношении эффектов терапии на массу тела могло бы ожидаться, что аналогично применению бета-блокаторов, снижение активности СНС, при использовании симпатолитиков может сопровождаться прибавкой массы тела. Однако клинические иссле-

дования демонстрируют обратный эффект, а именно уменьшение массы тела на фоне лечения моксонидином и рилменидином [50, 51]. Этот эффект объясняют с различных позиций, в первую очередь уменьшением инсулинорезистентности скелетных мышц на фоне вазодилатации.

Медикаментозные подходы к лечению ожирения у больных с артериальной гипертензией

Поскольку абдоминальное ожирение является ведущей составляющей метаболического синдрома, а его коррекция сопровождается не только уменьшением всех метаболических нарушений, но и снижением артериального давления, то вопрос о целесообразности медикаментозного лечения ожирения в настоящее время широко дискутируется в литературе. При этом необходимость немедикаментозных мероприятий, направленных на снижение массы тела, настолько очевидна, что не требует обсуждения. В настоящее время отсутствуют рекомендации по коррекции ожирения у больных с метаболическим синдромом при помощи лекарственных препаратов. В таблице приведены потенциальные механизмы медикаментозного лечения ожирения, при этом в настоящее время в клинической практике применяется лишь сибутрамин, одним из побочных эффектов которого является повышение АД, что затрудняет его применение у обсуждаемой категории пациентов, а также орлистат.

Чрезвычайно перспективным направлением в этом аспекте является использование антагонистов эндоканнабиоидной системы (римонабант). Эндоканнабиоиды являются активаторами чувства голода и могут вызывать полифагию. По последним данным применение римонабанта с течение 2 лет вызывает 5-10% снижение массы тела и обладает позитивным влиянием на метаболические параметры. Однако препарат еще находится в стадии клинических исследований. Другие направления исследований в этой области включают использование агонистов тиреоидных рецепторов, агонисты бета-3-адренорецепторов, аналоги лептина и др. Шансы применения в будущем агонистов бета-3-рецепторов крайне малы с учетом представленных выше данных об отсутствии снижения активности СНС и связанного с этим термогенеза при ожирении. Большие надежды возлагались на лептин и его агонисты, но результаты исследования введения лептина оказались разочаровывающими. Данный подход не привел к снижению массы тела, что, по-видимому, было связано с описанной выше лептинорезистентностью [52]. При этом следует иметь в виду, что большинство исследований по применению препаратов для лечения ожирения было достаточно кратковременным, данные о влиянии на долгосрочный прогноз отсутствуют, а переносимость терапии не оптимальна ни у одного из имеющихся лекарственных препаратов. В то же время если речь идет о лечении собственно ожирения, то спектр побочных эффектов терапии должен быть минимальным.

- Montani J.P., Antic V., Yang Z., Dulloo A. Pathways from obesity to hypertension: from the perspective of a vicious triangle // Obesity, 2002; 26 (Supple 2):S28-S38.
- Triosi R.L., Weiss S.T., Parker D.R. et al. Relation of obesity and diet to sympathetic nervous system activity // Hypertension, 1991; 14:669-677.
- Sowers J.R., Nyby M., Stern N. et al. Blood pressure and hormone changes associated with weight reduction in the obese //Hypertension, 1982; 4:686-691.
- Vas M., Jennings G., Turmer A. et al. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects // Circulation, 1997; 96:3423-3429.
- Rumantir M.S., Vas M., Jennings G. et al. Neural mechanisms in human obesityrelated hypertension // J. Hypertens., 1999; 17:1125-1133.
- Grassi G., Vailati S., Bertinieri G. et al. Heart rate as marker of sympathetic activity // J. Hypertens., 1998;16:1635-1639.
- Scherrer U., Randin D., Tappy D.R. et al. Body fat and sympathetic nerve activity in healthy subjects // Circulation, 1994; 82:2634-2640.
- 8. Grassi G., Seravalle G., Dell'Oro R. et al. Adrenergic and reflex abnormalities in obesity-related hypertension // Hypertension, 2000; Vol. 36:538-542.
- Grassi G., Dell'oro R., Facchini A.et al. Effect of central and peripheral fat distribution on sympathetic and baroreflex function in obese normotensives // J. Hypertens., 2004; 22:2363-2369.
- Alvarez G.E., Beske S.D., Ballard T.P., Davy K.P. Sympathetic neural activation in visceral obesity // Circulation , 2002;106:2533–2536.
- Landsberg L., Young J.B. Fasting, feeding, and the regulation of the sympathetic nervous system// N. Engl. J. Med., 1978;298:1295-1301.
- Verwaerde P., Senard J.M., Galiener M. et al. Changes in short-term variability of blood pressure and heart rate during the development of obesity-associated hypertension in high-fat fed dogs // J. Hypertension, 1999; 17:1135-1143.
- O'Dea K., Esler M., Leonard P., Stockigt J.R., Nestel P. Noradrenaline turnover during under-and over-eating in normal weight subjects // Metabolism, 1982;31:896-899.
- Di Bona G.F. Sympathetic neural control of the kidney in hypertension// Hypertension, 1992; 19:I-28-I-35.
- Haynes W.G., Sivitz W.I., Morgan D.A. et al. Sympathetic and cardiac actions of leptin // Hypertension ,1997; 30:619-623.
- Landsberg L. Hyperinsulinemia: possible role in obesity-induced hypertension// Hypertension, 1992; 19:161-166.
- Baskin D.G., Figlewicz D.P., Woods S.C. et al. Insulin in the brain// Ann Rev Physiol., 1987; 49:335-347.
- Masuo K., Mikami H., Ogihara T., Tuck M.L.. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young nonobese Japanese population // Am. J. Hypertens., 1997; 10:77-83.
- Kaaja J., Poyhonen-Alho M.K. Insulin resistance and sympathetic overactivity in women // J. Hypertension, 2006; 24:131-141.
- O'Hare J.A., Minaker K.L., Meneilly G.S., Rowe J.W., Pallotta J.A., Young J.B.. Effect of insulin on plasma norepinephrine and 3,4-dihydroxyphenylalanine in obese men// Metabolism, 1989;38:322-329.
- Carretta R., Fabris B., Fischetti F., Costantini M., et al. Reduction of blood pressure in obese hyperinsulinemic hypertensive patients during somatostatin infusion// J. Hypertens., 1989; 7(Suppl 6):S196-197.
- Grassi G., Colombo M., Seravalle G. et al. Dissociation between muscle and skin sympathetic nerve activity in hypertension, obesity, and heart failure // Hypertension, 1998; 31:896-899.
- Grassi G., Servalle G., Dell'Oro R. et al. Participation of the hypothlamus-hypophysys axis in the sympathetic activation of human obesity // Hypertension, 2001; Vol. 38:1316-1320.
- Grassi G., Dell'Oro R., Quarto-Trevano F. et al. Noradrenergic and reflex abnormalities in patients with metabolic syndrome // Diabetologia, 2005; Vol. 48:1359-1365.
- Poykko S.M., Kellokoski E., Horkko S., Kauma H., Kesaniemi Y.A. Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes // Diabetes, 2003;52:2546 –2553.
- Iwashima Y., Katsuya T., Ishikawa K. et al. Hypoadiponectinemia is an independent risk factor for hypertension // Hypertension, 2004;43:1318–1323.
- Paquali R., Cantobelli S., Casimirri F. et al. The role of opioid peptides in the development of hyperinsulinemia in obese women with abdominal fat distribution // Metabolism, 1992;41:763-767.
- McCubbin J.A., Survit R.S., Williams R.B., Nemeroff C.B., McNeilly M. Altered pituitary hormone response to naloxone in hypertension development // Hypertension, 1989;14:636-644.

- Young T., Palta M., Dempsey J. et al. The occurrence of sleep-disordered breathing among middle-aged adults // N. Engl. J. Med., 1993;328:1230-1235.
- 30. Wilcox I., McNamara S.G. et al. "Syndrom Z": the interaction of sleep apnoea, vascular risk factors and heart disease // Thorax, 1998; 53, Suppl. 3: S5-S28.
- Somers V.K., Dyken M.E., Clary M.P., Abboud F.M. Sympathetic neural mechanisms in obstructive sleep apnea // J. Clin. Invest., 1995;96:1897-1904.
- Narkiewicz K., van de Borne P.J., Montano N. et al. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea// Circulation, 1998;97:943-945.
- Phillips B.G., Kato M., Narkiewicz K., Choe I., Somers V.K. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea // Am. J. Physiol. Heart Circ. Physiol., 2000;279:H234-237.
- Narkiewicz K., Montano N., Cogliati C. et al. Altered cardiovascular variability in obstructive sleep apnea // Circulation, 1998;98:1071-1077.
- 35. Somers V.K. Debating sympathetic overactivity as hallmark of human obesity: an opposing position // J. Hypertens. ,1999;17:1061-1064.
- Scott M. Grundy A. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy// Nature Reviews 2006; Vol. 5,). 295-304/
- Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists: beyond the renin-angiotensin system. J Hypertension 2004; ;;:2253-2261.
- Lindholm LH, Ibsen T Dahlof B. Et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint Reduction in hypertension study (LIFE). Lancet 2002; 359;1004-1010.
- Rosen P., Ohly P., Gleichmann H. Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rat// J. Hypertens., 1997, Vol. 15, Suppl. 1, P.S31-S38.
- Penicaud L., Berthault M.F., Morin J. et al. Rilmenidine normalizes fructose-induced insulin resistance and hypertension in rats//J. Hypertens. Suppl., 1998, Vol.16. P.S45-S49.
- Kaan E.C, Br ckner R., Frohly P. et al. Effects of agmatine and moxonidine on glucose metabolism: an integrated approach towards pathophysiological mechanisms in cardiovascular metabolic disorders// Cardiovasc. Risk Factors, 1995, Vol. 5, Suppl 2, P.S29-S35.
- Haenni A., Litchel H. Moxonidine improves insulin sensitivity in insulin resistant hypertensives// J. Hypertens., 1999, Vol. 17, Suppl. 3, P.S29-35.
- Pillion G., Fevrier B., Codis P., Schutz D. Long-term control of blood pressure by rilmenidine in high-risk populations// Am. J. Cardiol., 1994, Vol. 74, P.58A-65A.
- Almazov VA, Shlyakto EV, Krasilnikova EA et al. Insulin resitsnce and arterial hypertension. The influence of moxonidine therapy// J Hypertens 2000; Vol. 18 (suppl 2). P.S12.
- Chazova I.E., Almazov V.A. and Shlyakhto E.V.. Moxonidine improves glycaemic control in mildly hypertensive, overweight patients: a comparison with metformin// Diabetes, Obesity and Metabolism ,2006, Vol. 8, N. 4, P. 456.
- Scemama M., Fevrier B., Beucler I., Dairou R. Lipid profile and antihypertensive efficacy in hyperlipidemic hypertensive patients: comparison of rilmenidine and captopril // J. Cardiovasc. Pharacol., 1995, Vol. 26(Suppl 2), P.S34-S39.
- De Luca N., Izzo R., Fontana D. et al. Hemodynamic and metabolic effect of rilmenidine in hypertensive patients with metabolic syndrome X. A Double-Blind Parallel Study versus amlodipine//J. Hypertens., 2000, Vol. 18, P. 10.
- Anichkov D.A., Shastak N.A., Schastnaya O.V. Comparison of rilmenidine and lisinopril on ambulatory blood pressure and plasma lipids and glucose levels in hypertensive women with metabolic syndrome// Curr. Med. Res., 2005, Vol. 21, P. 113,110
- Sanjuliani A.F., de Abreu V.G., Francischetti E.A.. Selective imidazoline agonist moxonidine in obese hypertensive patients// Int. J. Clin. Pract., 2006, Vol. 60, P.621-629
- Sharma AM, Wagner T, Marsalek P. Moxonidine in the treatment of overweight and obese patients with the metabolic syndrome: a postmarketing surveillance study. J Human Hypertens. 2004;18:669–675.
- 51. Шляхто Е.В., Конради А.О. Динамика массы тела, уровней глюкозы и липидов плазмы на фоне приема рилменидина в монотерапии и в комбинации с амлодипином (по результатам исследования АЛЬТАИР)// Артериальная гипертензия, 2006, Т.12, № 2, С. 67-71.
- Bell-Anderson KS, Bryson JM. Leptin as a potential treatment for obesity: progress to date. Treat Endocrinol. 2004;3:11–18.