© Г. К. Рапильбекова, Н. М. Мамедалиева

Республиканский научно-исследовательский центр охраны здоровья матери и ребенка, Алматы, Казахстан

- У 62 % пациенток с синдромом потери плода было установлено наличие приобретенной, наследственной или мультигенной тромбофилии. Приобретенная форма тромбофилии, к которой относится антифосфолипидный синдром, была обнаружена у 26 % пациенток. Генетически обусловленная тромбофилия, к которой относятся мутация MTHFR C677T, мутация FV Leiden и мутация гена протромбина G20210A, обнаружена у 53 % пациенток. При этом мутация фермента MTHFR выявлена у 41 % беременных, из них у 37 % — гетерозиготная форма, а у 4 % — гомозиготная форма. Мутация Leiden в гене фактора V обнаружена у 9 %, и во всех случаях гетерозиготная форма. Мутация гена протромбина G20210А выявлена у 4 % пациенток, и во всех случаях гетерозиготная форма. Мультигенная форма тромбофилии была обнаружена у 18 % пациенток.
- Ключевые слова: синдром потери плода; антифосфолипидный синдром; наследственная тромбофилия; мутации фактора FV Leiden; протромбин G20210A; полиморфизм C677T в гене МТНFR

РОЛЬ ТРОМБОФИЛИИ В ГЕНЕЗЕ СИНДРОМА ПОТЕРИ ПЛОДА У ЖЕНЩИН КАЗАХСКОЙ ПОПУЛЯЦИИ

В последние годы большое внимание уделяется наследуемым, а иногда и приобретенным в процессе жизни дефектам плазменных белков крови, которые обусловливают предрасположенность к тромбообразованию и являются самостоятельным фактором риска развития тромбозов, так называемым генетически детерминированным формам тромбофилии. Проведенный анализ многих исследований позволил выделить тромбофилии в самостоятельную группу причин невынашивания беременности. По данным разных авторов роль тромбофилии в структуре причин синдрома потери плода составляет 40–75 % [1–4, 6, 7].

Среди приобретенных форм тромбофилии самой распространенной остается антифосфолипидный синдром (**AФC**). В последние годы достигнуты большие успехи в разработке клинических и лабораторных критериев диагностики **AФC**, в понимании механизма тромбофилии, обусловленной циркуляцией **AФA** и связанными с этим осложнениями беременности.

Среди множества наследственных форм тромбофилии важная роль в структуре репродуктивных потерь и а кушерских осложнений принадлежит мутации гена метилентетрагидрофолатредуктазы (MTHFR), а также мутации фактора V (Leiden) и протромбина [5, 8, 9]. Учитывая наиболее высокую частоту этих мутаций среди причин синдрома потери плода возникает необходимость их скрининга в группах риска, что позволит установить причину и патогенетически правильно проводить профилактику невынашивания беременности.

Наличие значительных межэтнических и межрасовых различий вышеуказанных мутаций вызывает огромный интерес в изучении их распространенности у женщин казахской популяции с синдромом потери плода.

Цель исследования

Определить роль и частоту приобретенной и генетически обусловленной тромбофилии в генезе синдрома потери плода у женщин казахской популяции.

Материалы и методы исследования

Для достижения указанной цели нами проведено обследование 100 беременных с синдромом потери плода в анамнезе (основная группа) и 100 беременных с нормальной репродуктивной функцией (контрольная группа) в казахской популяции. Диагностика АФС проводилась с помощью определения волчаночного антикоагулянта в сыворотке крови. Выявление генетически обусловленных форм тромбофилии проводилось методом молекулярно-генетического анализа в 3 этапа:

Таблица

Частота различных форм тромбофилии в исследуемых группах

Формы тромбофилии	Основная группа (n = 100)		Контрольная группа (n = 100)		p
	абс. число	M ± m, %	абс. число	M ± m, %	
Тромбофилия:	62	$62,0 \pm 4,9$	28	$28,0 \pm 4,5$	< 0,001
приобретенная	26	$26,0 \pm 4,4$	1	$1,0 \pm 1,0$	< 0,001
генетически обусловленная	53	$53,0 \pm 5,0$	27	$27,0 \pm 4,4$	< 0,001
мультигенная	18	$18,0 \pm 3,6$	-	-	-
АФС:	26	$26,0 \pm 4,4$	1	$1,0 \pm 1,0$	< 0,001
изолированная	13	$13,0 \pm 3,4$	1	$1,0 \pm 1,0$	< 0,001
мультигенная	13	$13,0 \pm 3,4$	-	-	-
MTHFR:	41	$41,0 \pm 4,9$	24	24,0 ± 4,3	< 0,01
гомозиготная форма	4	4,0 ± 2,0	1	1,0 ± 1,0	-
гетерозиготная форма	37	$37,0 \pm 4,8$	23	$23,0 \pm 4,2$	< 0,02
изолированная	28	$28,0 \pm 4,5$	24	$24,0 \pm 4,3$	_
мультигенная	13	$13,0 \pm 3,4$	-	-	_
FV Leiden (гетерозиготная форма):	9	$9,0 \pm 2,9$	3	$3,0 \pm 1,7$	< 0,05
изолированная	4	$4,0 \pm 2,0$	3	$3,0 \pm 1,7$	_
мультигенная	5	$5,0 \pm 2,2$	_	_	-
PGM (гетерозиготная форма):	4	$4,0 \pm 2,0$	_	_	_
изолированная	2	2,0 ± 1,4	-	_	_
мультигенная	2	2,0 ± 1,4	-	-	_

выделение ДНК, амплификация (методом полимеразной цепной реакции (ПЦР)), рестрикция.

Результаты исследования и обсуждение

У 62 беременных основной группы ($62,0\pm4,9\%$) и у 28 беременных контрольной группы ($28,0\pm4,5\%$) было установлено наличие приобретенной, генетически обусловленной или мультигенной тромбофилии (p < 0,001). Данные о частоте различных форм тромбофилии в исследуемых группах представлены в таблице.

Приобретенная форма тромбофилии, к которой относится антифосфолипидный синдром, была обнаружена у 26 пациенток (26,0 \pm 4,4 %; p < 0,001)основной группы, в контрольной группе — у 1 (1%). При этом у 13 пациенток с АФС (13,0 \pm 3,4 %; p < 0,001) обнаружен изолированный АФС, а в сочетании с другими мутациями — у 13 (13,0 \pm 3,4 %).

Генетически обусловленная тромбофилия, к которой относятся мутация MTHFR C677T, мутация FV Leiden и мутация гена протромби-

на G20210A, обнаружена у 53 пациенток с СПП в анамнезе (53,0 \pm 5,0 %; р < 0,001). При этом мутация фермента MTHFR выявлена у 41 беременной (41,0 \pm 4,9 %; р < 0,01), из них у 37 (37,0 \pm 4,8 %; р < 0,02) — гетерозиготная форма, а у 4 (4,0 \pm 2,0 %) — гомозиготная форма. Изолированная форма мутации выявлена у 28 беременных (28,0 \pm 4,5 %), а в сочетании с другими формами тромбофилии — у 13 (13,0 \pm 3,4 %). В контрольной группе данная мутация обнаружена у 24 женщин (24,0 \pm 4,3 %), при этом у 23 (23,0 \pm 4,2 %) — гетерозиготная форма, и в 1 случае (1%) — гомозиготная форма.

Мутация Leiden в гене фактора V обнаружена у 9 пациенток (9,0 \pm 2,9 %; р < 0,05), и во всех случаях гетерозиготная форма. При этом изолированная форма наблюдалась у 4 беременных (4,0 \pm 2,0 %), а мультигенная форма — у 5 (5,0 \pm 2,2 %); в контрольной группе данная мутация наблюдалась у 3 (3,0 \pm 1,7 %).

При исследовании на мутацию гена протромбина G20210A нами получены следующие результаты: в основной группе данная мутация

обнаружена у 4 пациенток (4,0 \pm 2,0 %), и во всех случаях гетерозиготная форма. При этом изолированная форма встречалась у 2 пациенток (2,0 \pm 1,4 %), и в составе мультигенных форм — у 2 (2,0 \pm 1,4 %), в контрольной группе данная мутация не обнаружена.

Сочетание двух и даже трех дефектов, т. е. мультигенной формы тромбофилии нами обнаружено у 18 пациенток (18,0 \pm 3,6 %) основной группы, а в контрольной группе наблюдались лишь изолированные формы.

Возраст беременных обеих групп колебался от 20 до 44 лет.

Контингент женщин с синдромом потери плода в основном молодой, но старше чем среди женщин, рожающих в срок, и составил в среднем 30.4 ± 5.8 лет, в контрольной группе 27.6 ± 8.4 лет.

Анализ экстрагенитальных заболеваний пока зал, что в основной группе достоверно чаще выявлялись патология щитовидной железы (p < 0.05), заболевания сердечно-сосудистой системы (p < 0.02), детские инфекции (p < 0.01), заболевания почек (p < 0.001). У 21 (33,9 %) пациентки в семейном анамнезе выявлены тромботические эпизоды либо синдром потери плода.

Анализируя данные о характере менструальной функции в двух сравниваемых группах, можно отметить, что в основной группе достоверно чаще (p < 0,001) преобладали различные нарушения менструального цикла: альгоменорея была отмечена почти у каждой четвертой пациентки — $16 (25.8 \pm 5.6 \%; p < 0.05)$, полименорея — почти у каждой седьмой пациентки — $9 (14.5 \pm 4.5 \%)$.

При анализе перенесенных гинекологических заболеваний выявлено, что частота воспалительных заболеваний матки и придатков достоверно чаще преобладала в группе пациенток с СПП в анамнезе — в 34 случаях ($54,8\pm6,3\%$; р < 0,001), чем в группе пациенток без СПП в анамнезе — в 6 случаях ($21,4\pm7,8\%$). В основной группе также достоверно чаще преобладали эрозия шейки матки (р < 0,02), бесплодие эндокринного генеза и миома матки (р < 0,05).

Оценка репродуктивной функции обследованных беременных основывалась на анамнестических данных.

Анализ исхода предыдущих беременностей показал, что количество потерь плода в анамнезе у исследуемых беременных колебалось от 2 до 12 в группе женщин с ранними выкидышами (в среднем 3.8 ± 3.9 %) и от 1 до 7 в группе женщин с поздними выкидышами (в среднем 3.7 ± 3.1 %). Антенатальная гибель плода в основной группе встречалась у 13 пациенток (21,0 \pm 5,2 %), почти у каждой пятой, а преждевременные роды — у 21 (33.9 ± 6.0 %), почти у каждой третьей пациентки и достоверно чаще (р < 0,001), чем в контрольной группе. При этом с неонатальной гибелью — у 18 (29,0 \pm 5,8 %), почти у каждой третьей пациентки. В обеих сравниваемых группах без достоверных различий встречалось число искусственных абортов и внематочной беременности.

Наиболее частыми осложнениями беременности у женщин в основной группе были угроза прерывания беременности, которая выявлялась в 3 раза чаще, чем в контрольной группе (р < 0,001). Частота преэклампсии различной степени тяжести достоверно почти в 3 раза выше в группе женщин с СПП, чем в контрольной группе.

Хроническая фетоплацентарная недостаточность достоверно чаще (p < 0,001) наблюдалась почти у каждой третьей пациентки (29,0 \pm 5,8 %) основной группы.

Проведенный анализ структуры и исходов настоящей беременности показал, что число своевременных родов составило 36 (58,0 \pm 6,3 %), отмечалось почти у каждой второй женщины, в то время как в контрольной группе у всех 28 женщин (р < 0,001). В основной группе преждевременные роды отмечались почти у каждой шестой пациентки (17,7 \pm 4,8 %), поздние выкидыши — почти у каждой седьмой пациентки (14,5 \pm 4,5 %). А такие исходы беременности, как ранние выкидыши, антенатальная гибель плода, неонатальная гибель плода у пациенток основной группы встречались в трех случаях (4,8 \pm 2,7 %).

Частота осложнений в родах у пациенток с СПП в анамнезе была гораздо выше, чем в сравниваемой группе. Наиболее частое осложнение в течение родов отмечалось по частоте несвоевременного излития околоплодных вод (p < 0.02). Среди аномалий сократительной деятельности матки в основной группе у 5 пациенток ($10,6 \pm 4,5 \%$) встречалась слабость родовой деятельности, а в контрольной группе — у 1 (3,6 \pm 3,5 %). Медикаментозное родовозбуждение и родостимуляция достоверно чаще проводились у женщин основной группы $(14.9 \pm 5.2 \%)$, чем в контрольной группе $(3.6 \pm 3.5 \%)$; p < 0.05). Также в основной группе (23,4 ± 6,2 %) по сравнению с контрольной группой $(7.1 \pm 4.9 \%)$ достоверно чаще (р < 0,02) наблюдались травмы промежности, в том числе эпизио- и перинеотомия.

В 5 случаях (10.6 ± 4.5 %) в основной группе в третьем периоде родов проводилось ручное отделение и выделение последа, а в контрольной группе — в 1 случае (3.6 ± 3.5). В контрольной группе все женщины родили самостоятельно, а в основной группе — в 9 случаях (19.1 ± 5.7 %) роды завершились абдоминальным родоразрешением. Показаниями к операции кесарева сечения явились: первородящая старшего возраста с отягощенным акушерским

анамнезом, рубец на матке, гипоксия плода, слабость родовой деятельности у первородящей старшего возраста.

Подводя итог, следует сказать о значительной роли приобретенной и генетически обусловленной тромбофилии в генезе синдрома потери плода у женщин казахской популяции.

Таким образом, проведенный нами анализ клинического материала показал высокую частоту осложнений течения и исходов беременности у женщин с тромбофилией и синдромом потери плода, и возможность избежать вышеперечисленных осложнений беременности и неблагополучных исходов беременности при своевременном выявлении тромбофилии и проведении патогенетической терапии с учетом выявленного дефекта и формы тромбофилии.

Статья представлена М. С. Зайнулиной НИИ акушерства и гинекологии им. Д. О. Отта, Санкт-Петербург

Литература

- Башмакова Н. В. Антифосфолипидный синдром и невынашивание беременности: клиника, диагностика, лечение / Башмакова Н. В. // Проблемы беременности. — 2000. — № 1. — С. 52–59.
- 2. *Гениевская М. Г.* Патогенетическое обоснование противотромботической терапии невынашивания беременности у женщин с антифосфолипидным синдромом: Автореф. дис... . канд. мед. наук. М., 1999. 27 с.
- Макацария А. Д. Герпетическая инфекция. Антифосфолипидный синдром и синдром потери плода / Макацария А. Д., Долгушина Н. В. — М.: Триада-Х, 2004. — 80 с.
- 4. Основные принципы ведения беременности у женщин с синдромом потери плода и тромбофилией в анамнезе /

- Матвеева Т. Е., Бицадзе В. О., Баймурадова С. М. [и др.] // Акуш. и гин. 2003. \mathbb{N}^2 4. С. 26–30.
- 5. *Bick R. L.* Clinical aspects of heparin-induced thrombocytopenia and thrombosis and other effects of heparin therapy / Bick R. L., Frenkel E. P. // Clin. Appl. Thrombosis / Haemostasis. 1999. Vol. 5. P. 7–15.
- Brenner B. Inherited thrombophilia and pregnancy loss / Brenner B. // Thrombosis and Haemostasis. J. – 1999. – Vol. 82. – P. 634–641.
- 7. Cowchock S. Antibodies and pregnancy loss / Cowchock S. // The New Eng. Journal of Medicine. 1997. Vol. 337. P. 197–198.
- 3. *Kutteh W. H.* Antiphospholipid antibody-assotiated reccurent pregnancy loss: treatment with heparin and low-dose aspirin is superior to low dose aspirin alone / Kutteh W. H. // American J. Obstet. Gynecol. 1996. Vol. 174. P. 1584–1589.
- Rees D. C. World distribution of factor V Leiden / Rees D. C., Cox M., Clegg J. B. // Lancet. — 1995. — Vol. 346. — P. 346—1133.

THE ROLE OF THROMBOPHILIA IN GENESIS OF FETAL LOSS SYNDROME

Rapilbekova G. K., Mamedalieva N. M.

- Summary: Availability of acquired, hereditary or multigenes forms of thrombophilies was established at 62 % patients with syndrome of fetal loss. The acquired form of thrombophilia was founded at 26 % patients. The genetically caused forms of thrombophilies: mutation of MTHFR C677T, mutation of FV Leiden and mutation of a gene of prothrombin G20210A was founded at 53 % patients. Thus mutation of MTHFR C677T was founded at 41 % patients, from them at 37 % were heterozygous forms and at 4 % patients were homozygous forms. The mutation of FV Leiden was founded at 9 % patients and in all causes were heterozygous forms. The mutation of a gene of prothrombin G20210A was founded at 4 % patients, and in all causes were heterozygous forms. The combinations of two and even of three defects of thrombophilies was founded at 18 % patients.
- **Key words:** syndrome of fetal loss; antiphospholipid syndrome; hereditary thrombophilia; mutations of the factor FV Leiden; prothrombin G20210A; polymorphism C677T in the gene of MTHFR