по отношению к выборке с ИАГ и группе контроля. Это обусловлено прежде всего возрастанием скорости свободнорадикального окисления в опытной группе за счет снижения устойчивости тканей к окислительным процессам даже при исходно равном количестве проксидантов в биоматериале исследуемых групп.

Выраженную интенсивность процессов перекисного окисления липидов у пациентов с АГ в ассоциации с МН отражает значение светосуммы хемилюминесценции, которое на 14,0% превышает показатели группы контроля и на 8,0% — показатели группы с ИАГ.

Наличие положительной связи между пиковой секрецией 6-СОМТ и тангенсом угла наклона тоже подтверждает это наблюдение. Согласно литературным источникам, экзогенный М является мощным антиоксидантом, направленной ловушкой свободных радикалов [4]. В нашем исследовании получены факты, свидетельствующие о нарушении равновесия в системе «прооксиданты/антиоксиданты» с преобладанием окислительных процессов. Для доказательства гипотезы о том, что снижение мелатонина может индуцировать избыточные окислительные реакции, был проведен множественный регрессионный анализ. Его результаты подтвердили правомочность предположения, так как итоговые значения коэффициентов детерминации демонстрируют не только наличие связи и ее направление, но и степень влияния независимой переменной, в данном случае метаболитов мелатонина, на исследуемые показатели свободнорадикального окисления.

Таким образом, в условиях сниженной пиковой секреции метаболитов мелатонина у пациентов с АГ и МН повышается активность прооксидантной системы и снижается уровень антиоксидантной защиты, определяемой методом хемолюминесцентного анализа.

Ограничения исследования связаны с неодномоментным забором крови для проведения хемилюми-

несцентного анализа и сбором мочи, что, вероятно, сказалось на силе корреляционной связи между исследуемыми показателями.

ЛИТЕРАТУРА

- 1. Беляев А. Н. Системная и региональная антиоксидантная терапия при осложненных формах диабетической стопы / А. Н. Беляев, А. Н. Рыгин, А. Н. Захватов // Хирургия. 2007. № 11. С. 46—50.
- 2. Владимиров Ю. А. Свободные радикалы и клеточная хемилюминесценция / Ю. А. Владимиров, Е. В. Проскурина // Успехи биологической химии. 2009. Т. 49. С. 341—388.
- 3. Мелатонин: теория и практика / Под ред. С. И. Рапопорта, В. А. Голиченкова. М.: ИД «Медпрактика-М», 2009. 100 с.
- 4. *Меньшикова Е. Б.* Окислительный стресс. Прооксиданты и антиоксиданты / Е. Б. Меньшикова [и соавт.]. М.: Слово, 2006. 556 с.
- 5. *Шестаков В. А.* Хемилюминесценция плазмы крови в присутствии перекиси водорода / В. А. Шестаков, Н. О. Бойчевская, М. П. Шерстнев // Вопр. мед. химии. 1979. Т. 25. Вып. 2. С. 132–137.
- 6. Benloucif S. Measuring melatonin in humans / S. Benloucif [et al.1 // J. Clin. Sleep, Med. 2008. Vol. 4 (1). P. 66–69.
- 7. Dedon P. Reactive nitrogen species in the chemical biology of inflammation / P. Dedon, S. Tannenbaum // Arch. biochem. biophys. 2004. Vol. 423. P. 12–22.
- 8. *Grant P.* Neel revisited: the adipocyte, seasonality and type 2 diabetes / P. Grant, E. Scott // Diabetologia. 2006. Vol. 49. P. 1462–1466.
- 9. *Hsu C*. Phosphate-induced oxidative damage in rats: attenuation by melatonin / C. Hsu [et al.] // Free radic. biol. med. 2000. Vol. 28. P. 636–642.
- 10. Saely C. H. Adult treatment panel III 2001 but not International diabetes federation 2005 criteria of the metabolic syndrome predict clinical cardiovascular events in subjects who underwent coronary angiography / C. H. Saely [et al.] // Diabetes care. 2006. Vol. 29 (4). P. 901–907.

Поступила 13.12.2011

Э. В. ДУДНИКОВА, И. В. ПАНОВА

РОЛЬ ОКСИДА АЗОТА В ФОРМИРОВАНИИ ХРОНИЧЕСКИХ ВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЙ ВЕРХНИХ ОТДЕЛОВ ПИЩЕВАРИТЕЛЬНОЙ СИСТЕМЫ У ДЕТЕЙ В НАЧАЛЕ ПОЛОВОГО РАЗВИТИЯ

Кафедра педиатрии с курсом неонатологии Ростовского государственного медицинского университета,

Россия, 344022, г. Ростов-на-Дону, пер. Нахичеванский, 29. E-mail: pan tol@list.ru, тел. 8 (928) 2263265

Целью исследования было изучение роли оксида азота (NO) в формировании хронического гастродуоденита в сочетании с гастроэзофагеальной рефлюксной болезнью у детей в I–III стадиях полового развития. Установлено снижение количества NO в периферической крови в группе больных в сравнении со здоровыми детьми. Доказана связь изменений уровня NO у мальчиков с тяжестью морфологического поражения слизистой оболочки пищевода, желудка, двенадцатиперстной кишки. Установлены разнонаправленные изменения уровня NO в крови у мальчиков и девочек в зависимости от динамики полового созревания и тяжести воспалительного процесса.

Ключевые слова: оксид азота, половое созревание, хронический гастродуоденит, гастроззофагеальная рефлюксная болезнь.

E. V. DUDNIKOVA, I. V. PANOVA

ROLE OF NITRIC OXIDE IN FORMATION OF CHRONIC INFLAMMATORY DISEASES OF THE TOP DEPARTMENTS OF THE ALIMENTARY SYSTEM AT CHILDREN IN THE BEGINNING OF SEXUAL DEVELOPMENT

Department of pediatrics with a course of a neonatology of the Rostov state medical university, Russia, 344022, Rostov-on-Don, Nahichevansky str., 29. E-mail: pan tol@list.ru, tel. 8 (928) 2263265

The aim of thisstudy was to assess the role of nitric oxide (NO) in formation chronic gastroduodenitis combined with gastroesophageal reflux disease at children in I-III stages of sexual development. Depression of quantity NO in a blood in group of patients in comparison with healthy children is established. Communication of changes of level NO at boys with gravity of a morphological lesion of a mucosa of an esophagus, a stomach, a duodenum is proved. Are established multidirectional changes of level NO in a blood at boys and girls depending on dynamics of puberty and gravity of inflammatory process.

Key words: nitric oxide, chronic gastroduodenitis, gastroesophageal reflux disease, puberty.

Введение

Среди заболеваний органов пищеварения, занимающих второе место в структуре хронической патологии у детей, устойчиво доминируют хронические воспалительные заболевания эзофагогастродуоденальной области, рассматриваемые в настоящее время как кислотозависимые (КЗЗ) и составляющие до 65% от общего количества детей с гастроэнтерологической патологией [1,12,13].

Известно, что пик патологии верхних отделов пищеварительного тракта (ВОПТ) приходится на период полового созревания [2, 4, 5, 7]. Несбалансированность и напряженность обменных процессов в пубертатный период, нестабильность вегетативной и эндокринной регуляций приводят к формированию морфофункциональных изменений пищеварительного тракта, в том числе верхних его отделов [6, 11]. Более того, рассматривая пубертат как критический период онтогенеза, сопряженный с возрастными изменениями эндокринной системы в виде элементов гормональной дисрегуляции, не исключаем вероятность нарушения функционального состояния эндотелия с развитием эндотелиальной дисфункции (ЭД), играющей немаловажную роль в общем спектре триггерных факторов риска, влияющих на формирование КЗЗ. Эндокринная активность эндотелия зависит от его функционального состояния. С одной стороны, эндотелий участвует практически во всех процессах, определяемых как гомеостаз, гемостаз и воспаление; с другой, это первый орган-мишень, наиболее рано реализующий многие звенья патогенеза разной патологии, в том числе заболеваний органов пищеварения. Оксид азота (NO) относится к универсальным регуляторам физиологических функций организма, играет важную роль в развитии многих патофизиологических состояний [3, 8, 9, 14, 17]. Экспериментальные исследования показали, что NO нормализует микроциркуляцию, оказывает антибактериальное действие, купирует инфекцию и воспаление, активизирует функцию макрофагов и пролиферацию фибробластов, а также стимулирует регенерацию тканей [10].

Таким образом, цель настоящего исследования – оценить роль оксида азота в формировании кислото-зависимых заболеваний у детей в начале пубертата с учетом тяжести поражения слизистой оболочки (CO) ВОПТ и стадии полового развития (СПР).

Материалы и методы исследования

Обследовано 76 больных, страдающих хроническим гастродуоденитом (ХГД) в сочетании с гастроэзо-

фагеальной рефлюксной болезнью (ГЭРБ), в возрасте от 8 до 15 лет, находившиеся на лечении в детском гастроэнтерологическом отделении городской больницы № 20 г. Ростова-на-Дону. Верификация диагноза проводилась по результатам общеклинического обследования, эзофагогастродуоденоскопии с проведением биопсии СО желудка и пищевода, обследованием на выявление Н. руlori методами ПЦР и ИФА; назначалось УЗИ органов брюшной полости.

По результатам обследования больные были разделены на 2 группы: І группа — 41 ребенок с поверхностным гастродуоденитом (ПГД); ІІ группа — 35 детей с эрозивным гастродуоденитом (ЭГД). Во всех случаях хроническая гастродуоденальная патология сочеталась с гастроэзофагеальной рефлюксной болезнью (ГЭРБ).

Оценка СПР осуществлялась по критериям J. M. Tanner (1962) [11]. Исследование оксида азота в периферической крови проводилось методом иммуноферментного анализа наборами фирмы «R&D» (США) в стандартизированных условиях, утром, натощак.

Также проведено обследование 24 здоровых детей 8–15 лет (15 мальчиков, 9 девочек, обучающихся в кадетском корпусе г. Ростова-на-Дону), включающее оценку стадии полового развития (СПР) и определение уровня NO в периферической крови.

Родители пациентов были ознакомлены с целью и дизайном работы, дали информированное согласие на участие их детей в исследовании и публикацию его результатов в открытой печати.

Статистическую обработку полученных результатов проводили с помощью «Statistica 6» методами параметрической и непараметрической статистики (критерии Стьюдента, Манна-Уитни). Данные представлены в виде медианы, средней величины, ошибки средней, а также 25-го и 75-го перцентилей [Ме (25–75%)]. Достоверным считали уровень значимости p<0,05.

Результаты исследования и их обсуждение

При распределении больных по полу было выявлено, что в I группе (ПГД+ГЭРБ) превалировали девочки (53,7%). Во II группе (ЭГД+ГЭРБ) преобладали мальчики (65,7%). Результаты эндоскопического обследования показали признаки активного хронического гастродуоденита у всех наблюдаемых детей. У больных с ЭГД+ГЭРБ определяли поверхностные эрозии в СО антрального отдела желудка, луковицы двенадцатиперстной кишки и постбульбарных отделов. У детей

выявлялись признаки ГЭРБ 1-й степени. Все пациенты находились в стадии обострения заболевания.

Изучение анамнеза больных показало, что наследственная отягощенность по патологии органов пищеварения выявлялась у 71,3% детей. В 69,8% случаев имела место патология перинатального периода (гестозы, угроза прерывания беременности, интранатальная патология); на первом году жизни более половины детей (67,4%) получали раннее смешанное или искусственное вскармливание.

При оценке жалоб не было выявлено статистически значимых отличий клинических проявлений между детьми I и II групп. У всех пациентов (100%) выявлялся синдром абдоминальных болей, в 68,2% случаев связанный с приемом пищи. Наиболее часто боли локализовались в эпигастральной и пилородуоденальной областях. Более чем у половины пациентов (58,2%) определялась сочетанная локализация болей.

Диспепсический синдром диагностирован у 76,1% детей, который проявлялся тошнотой (62,1%), отрыжкой (49,8%), изжогой (28,5,7%), рвотой (21,7%).

Синдром вегетативной дистонии определялся у всех больных (100%). Наиболее характерными симптомами были головная боль (77,9%), повышенная утомляемость (69,8%), эмоциональная лабильность (57,5%), кардиалгии (24,8%).

У девочек превалировала I СПР (15 из 34, т. е. 44,1%), а у мальчиков – II СПР (19 из 42, т. е. 45,2%).

Как показали исследования, уровень NO в периферической крови у здоровых детей зависел от пола, а именно: у мальчиков его значения были существенно ниже, чем у девочек (14,03±1,06 и 19,53±2,78 мкмоль/л

соответственно, p<0,05), что имело большое значение для дифференцированного использования нормативов в исследуемых группах больных детей.

Анализ содержания NO в периферической крови у больных в сравнении с установленными нормами выявил статистически достоверное снижение его уровня у больных с K33 как у мальчиков, так и у девочек (p<0,001) (табл. 1).

Сравнительный анализ содержания NO в крови у девочек с ПГД±ГЭРБ и ЭГД±ГЭРБ не выявил достоверных отличий уровня исследуемого показателя (11,28±1,16 и 10,89±1,51 мкмоль/л соответственно I и II группам, p>0,05). Однако изучение динамики NO обнаружило достоверную тенденцию к снижению его количества в сравнении с нормой (p<0,05) от I к III СПР у девочек с ПГД±ГЭРБ (12,67±6,79 мкмоль/л; 10,13±4,98 мкмоль/л; 10,09±0,64 мкмоль/л соответственно I, II, III СПР). У девочек с ЭГД±ГЭРБ динамика NO имела другой характер, а именно: І СПР характеризовалась наиболее низкими значениями показателя относительно нормы (7,96±1,28 мкмоль/л; в сравнении с нормой р<0,05) с последующим повышением его содержания во II СПР (10,37±0,61 мкмоль/л; в сравнении с нормой – p<0.05) и III СПР, приближающегося к норме (11,32±3,11 мкмоль/л; в сравнении с нормой - p > 0.05).

Исследование содержания NO в крови у мальчиков с ПГД+ГЭРБ и ЭГД+ГЭРБ выявило статистически значимые различия показателя в виде более высокого его уровня у больных II группы относительно I группы (p<0,05) на фоне общего снижения показателя в сравнении с нормой (p<0,05 и p<0,001 соответственно I и II группам) (табл. 2).

Таблица 1

Уровень оксида азота в периферической крови у мальчиков и девочек с кислотозависимыми заболеваниями, мкмоль/л

Over 20072	Маль	чики	Девочки		
Оксид азота	Здоровые Больные		Здоровые	Больные	
N	15	42	9	34	
Me	13,62	10,18	19,56	10,21	
25-й перцентиль	11,39	9,18	14,67	7,73	
75-й перцентиль	15,90	12,12	23,14	11,76	
р		p ₁ <0,001	p ₂ <0,001	p ₃ >0,05	

Примечание: p – достоверность различий; p_1 – здоровые и больные мальчики; p_2 – здоровые и больные девочки; p_3 – больные мальчики и девочки.

Таблица 2

Уровень оксида азота в периферической крови у мальчиков с учетом тяжести поражения слизистой оболочки эзофагогастродуоденальной области, мкмоль/л

Оксид азота	I группа	II группа	Норма	
N	19	23	15	
Me	9,92	10,28	13,62	
25-й перцентиль	8,80	9,18	11,39	
75-й перцентиль	10,99	14,12	15,90	
р	p ₁ <0,05	p ₂ <0,001	p ₃ <0,05	

Уровень оксида азота в периферической крови у мальчиков в I и II группах в зависимости от стадий полового развития, мкмоль/л

		I группа				II группа	
Показатели	Норма	І СПР	ІІ СПР	III СПР	І СПР	ІІ СПР	III СПР
N	15	11	4	3	4	15	4
Me	13,62	9,92	8,99	10,08	14,12	12,12	9,54
25-й перцентиль	11,39	8,80	7,52	9,91	11,65	10,28	8,63
75-й перцентиль	15,90	10,99	14,46	12,50	14,68	12,54	10,28
р		p ₁ <0,01	p ₂ <0,05	p ₃ >0,05	p ₄ >0,05	p ₅ <0,05	p ₆ <0,05

Примечание: р — достоверность различий; p_1 — I СПР и норма, I группа; p_2 — II СПР и норма, I группа; p_3 — III СПР и норма, I группа; p_4 — I СПР и норма, II группа; p_5 — II СПР и норма, II группа;

р_в – III СПР и норма, II группа.

При анализе содержания оксида азота в периферической крови у мальчиков с ПГД±ГЭРБ было установлено, что сниженное количество NO, достоверно отличающееся от нормы, определялось в I и II СПР (р<0,01 и р<0,05 соответственно). Отмечалась четкая тенденция к росту уровня NO к III СПР с приближением к норме (р>0,05). У мальчиков II группы динамика оксида азота имела другую тенденцию, а именно: уровень NO в I СПР соответствовал норме (р>0,05), а во II СПР и III СПР отмечалось выраженное снижение его количества (в сравнении с нормой р<0,05) (табл. 3).

Таким образом, проведенные исследования доказывают факт участия оксида азота в патогенезе КЗЗ у детей в начале пубертата. Выявленный дефицит уровня NO в периферической крови у детей, страдающих хронической воспалительной патологией эзофагогастродуоденальной области, относительно разработанных нормативов, вероятно, приводит к развитию ишемии СО желудочно-кишечного тракта, повышению её проницаемости, изменению продукции гастроинтестинальных гормонов, что обеспечивает нарушение секреторной функции желудка, протективных свойств СО ВОПТ, способствует развитию воспалительно-деструктивного процесса в СО эзофагогастродуоденальной области, что согласуется с данными U. Forstermann (2006) [15] и S. J. Konturek et. al. (2007) [16]. Более высокие показатели оксида азота у мальчиков с эрозивным поражением ВОПТ в сравнении с ПГД+ГЭРБ, остающиеся, тем не менее, ниже нормы, не исключают вероятности парадоксального эффекта NO, когда избыток NO угнетает барьерную функцию СО [18] и может быть маркером усиления катаболических реакций и деструктивного компонента воспалительного процесса в СО эзофагогастродуоденальной области. Следует отметить, что у девочек с КЗЗ в отличие от мальчиков не выявлено зависимости уровня NO от тяжести морфологических изменений СО ВОПТ, что, вероятно, обусловлено особенностями функции половых гормонов в период становления пубертата и их неоднозначным влиянием на эндокринную активность эндотелия у детей разного пола. Разнонаправленная динамика оксида азота в крови у девочек и мальчиков в зависимости от СПР и тяжести воспалительного процесса в СО ВОПТ также доказывает связь маркеров эндотелиальной дисфункции с активностью половых гормонов в сложном процессе нейроэндокринной перестройки организма в начале пубертата в процессе формирования КЗЗ.

Таким образом, выявлены достоверные различия уровня NO в периферической крови у здоровых детей I–III СПР в зависимости от пола.

Установлено, что у детей, страдающих воспалительными заболеваниями ВОПТ и находящихся в I–III стадиях полового развития, имеет место статистически значимое снижение уровня NO в крови в сравнении с нормой.

Доказано, что у мальчиков достоверное изменение уровня NO в крови связано с тяжестью морфологического поражения CO BOПТ.

Установлены разнонаправленные изменения уровня NO в периферической крови у мальчиков и девочек в зависимости от СПР.

ЛИТЕРАТУРА

- 1. Баранов А. А., Альбицкий В. Ю. Социальные и организационные проблемы педиатрии: Избранные очерки. М., 2003. 511 с.
- 2. *Бельмер С. В., Коколина В. Ф.* Практическое руководство по детским болезням. Т. 2. Гастроэнтерология детского возраста. М.: Медпрактика, 2010. 468 с.
- 3. *Булатова И. А., Гальбрайх Р. Б., Щекотова А. П., Макарова Н. Л.* Роль дисфункции эндотелия в патогенезе хронического гепатита С // Мир вирусных гепатитов. 2008. № 3. С. 2–5.
- 4. Детская гастроэнтерология: Руководство для врачей / Под редакцией проф. Н. П. Шабалова. М.: МЕДпресс-информ, 2011. 736 с.
- 5. Дудникова Э. В. Клиническое значение билиарных рефлюксов в формировании гастроэзофагеальной рефлюксной болезни у детей и методы их коррекции // Клинические перспективы гастроэнтерологии и гепатологии. 2006. № 5. С. 28–31.
- 6. *Дудникова Э. В., Домбаян С. Х.* Роль вегетативной нервной системы в патологии желудочно-кишечного тракта // Южно-Российский медицинский журнал. 2001. № 5/6. С. 78–81.
- 7. Запруднов А. М., Григорьев К. И. Подростковая гастроэнтерология: болезнь начинается в детстве // Врач. 2003. № 5. С. 7–10.
- 8. *Ивашкин В. Т., Драпкина О. М.* Клиническое значение оксида азота и белков теплового шока. М.: ГЭОТАР-Медиа, $2001.-88~\mathrm{c}.$
- 9. *Маев И. В., Трухманов А. С., Малышев И. Ю., Черемушкина Н. В.* Исследование метаболизма оксида азота при гастроэзофагеальной рефлюксной болезни // Клинические перспективы гастроэнтерологии, гепатологии. 2007. № 6. С. 11–16.

- 10. Свистунов Б. Д., Андреев В. Г., Макарова Г. В. и др. Применение оксида азота в комплексном лечении больных туберкулезом легких // Проблемы туберкулеза и болезней легких. 2009. № 6. С. 50—52.
- 11. Строев Ю. И., Чурилов Л. П. Эндокринология подростков. СПб: ЭЛБИ-СПб, 2004. 384 с.
- 12. Цветкова Л. Н., Филин В. А., Нечаева Л. В. и др. Достижения и перспективы развития детской гастроэнтерологии // Материалы XVI Конгресса детских гастроэнтерологов России и стран СНГ «Актуальные проблемы абдоминальной патологии у детей». М., 2009. С. 8–16.
- 13. *Щербаков П. Л.* Гастроэзофагеальная рефлюксная болезнь у детей // Болезни органов пищеварения. 2007. Том 9. № 2. С. 42–47.
- 14. Casselbrant A., Pettersson A., Ruth M. et al. Sources of intra-oesophageal nitric oxide production following intraluminal acid

- exposure // Scandinavian journal of gastroenterology.- 2002. V. 37. $N_{\rm e}$ 6. P. 631-637
- 15. Forstermann U., Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace // Circulation. 2006. V. 113. № 1708. P. 14.
- 16. Kuiken S. D., Vergeer M., Heisterkamp S. H. et al. Role of nitric oxide in gastric motor and sensory functions in healthy subjects // Gut. 2002. N9 51. P. 212-218.
- 17. Konturek S. J., Konturek P. C., Brzozowskal et al. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT) // Journal of physiology and pharmacolog: an official journal of the Polish physiological society. 2007. V. 58. \mathbb{N}_2 3. P. 381–405.
- 18. Modlin I. M., Sachs G., Wright N., Kidd M. Edkins and a century of acid suppression // Digestion. 2005. V. 72. № 2. P. 129–145.

Поступила 15.10.2011

И. Д. ЕВТУШЕНКО¹, К. С. КУБЛИНСКИЙ¹, И. О. НАСЛЕДНИКОВА², В. В. НОВИЦКИЙ², В. Н. ТКАЧЕВ¹, Н. С. МЕНЬШИКОВА¹, Е. Б. ИЛЬЯДИ², А. С. ЮРЧЕНКО¹

ГЕНИТАЛЬНЫЙ ЭНДОМЕТРИОЗ И СПАЕЧНЫЙ ПРОЦЕСС: ВОЗМОЖНАЯ РОЛЬ ТРАНСФОРМИРУЮЩЕГО ФАКТОРА РОСТА-БЕТТА

¹Кафедра акушерства и гинекологии,

²кафедра патофизиологии ГБОУ ВПО «Сибирский государственный медицинский университет» Минздравсоцразвития России,

> Россия, 634050, г. Томск, ул. Московский тракт, 2. E-mail: natali100583@mail.ru, тел. +7 (913) 884-38-32

Течение генитального эндометриоза сопровождается повышением содержания TGF-β в сыворотке крови и перитонеальной жидкости. Риск подверженности генитальному эндометриозу ассоциирован с аллелем Т и генотипом ТТ локуса C-509T гена TGFB. Наиболее выраженный спаечный процесс обнаруживается при наличии генотипа ТТ полиморфизма C-509T гена TGFB.

Ключевые слова: генитальный эндометриоз, спаечный процесс, трансформирующий фактор роста-бетта.

I. D. EVTUSHENKO¹, K. S. KUBLINSKY¹, I. O. NASLEDNIKOVA², V. V. NOVITSKY², V. N. TKACHEV¹, N. S. MENSHIKOVA¹, E. B. ILIADI², A. S. JURCHENCO¹

GENITAL ENDOMETRIOSIS AND ADHESIVE PROCESS: PROBABLE ROLE OF THE TRANSFORMING FACTOR OF GROWTH-BETTA

¹Chair of obstetrics and gynecology, ²chair of pathological physiology Siberian state medical university, Russia, 634050, Tomsk, str. Moskovskij trakt, 2. E-mail: natali100583@mail.ru, tel. +7 (913) 884-38-32

Abstract. The current of genital endometriosis is accompanied by increase TGF- β content in blood and peritoneal liquid. The risk of susceptibility to genital endometriosisis is associated with allele T and a genotype of a TT of locus C-509T of gene TGFB. The most expressed adhesive process was found out in the presence of a genotype of a TT of polymorphism C-509T of gene TGFB.

Key words: genital endometriosis, adhesive process, transforming factor of growth-betta.

Введение

Многие годы врачи всего мира ведут упорную борьбу со спаечным процессом. На основании изучения различных аспектов данной проблемы выдвинута масса гипотез об этиологии и патогенезе образования спаек. Согласно классической теории травма брюши-

ны приводит к экссудации фибриногена с последующим образованием фибринозных сращений в брюшной полости, в которые проникают фибробласты и превращают сращения в фиброзные спайки. Однако травмирование брюшины не всегда приводит к образованию фиброзных спаек, а большие травмированные