ЛЕКЦИИ

РОЛЬ НАТРИЙУРЕТИЧЕСКИХ ПЕПТИДОВ В ДИАГНОСТИКЕ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ

Шарошина И.А., Сидоренко Б.А., Преображенский Д.В.

Медицинский центр Управления делами Президента Российской Федерации, Москва.

В последнее время предпринимаются попытки использовать биохимические методы для диагностики дисфункции миокарда. Наиболее часто для дифференциальной диагностики одышки сердечного происхождения используется определение содержания предсердного и мозгового натрийуретических пептидов (или их фрагментов) в плазме крови.

Как известно, различают три натрийуретических пептида — A, B и C. Эти пептиды имеют сходную структуру и оказывают примерно одинаковые эффекты [1, 6, 11, 12]. Наиболее изучена биохимия и физиология натрийуретических пептидов типов A и B.

Натрийуретический пептид типа A (предсердный/желудочковый натрийуретический пептид) - это новое название нейрогуморального вещества, высвобождаемого преимущественно из предсердий, а также из желудочков сердца, которое в литературе ранее описывалось под названием "предсердный натрийуретический фактор". Натрийуретический пептид типа A был открыт в 1981 г.

Натрийуретический пептид типа A является пептидом, состоящим из 28 аминокислотных остатков. Уровни натрийуретического пептида типа A повышены у больных с XCH и коррелируют с тяжестью заболевания. Главным стимулом для секреции натрийуретического пептида типа A является напряжение стенок предсердий; меньшее значение, по-видимому, имеет повышенное внутрипредсердное давление. Недавние исследования показали, что желудочки сердца также способны секретировать натрийуретический пептид типа A.

Физиологическая роль натрийуретического пептида типа *А* до конца не выяснена, однако известно, что во многом он действует как антагонист ренин-ангиотензин-альдостероновой системы. Натрийуретический пептид типа *А* тормозит секрецию ренина юкстагломерулярным аппаратом почек и ослабляет системную и почечную вазоконстрикцию, вызванную ангиотензином II. Он также тормозит реабсорбцию ионов натрия в проксимальных канальцах, стимулированную ангиотензином II. В экспериментах показано, что натрийуретический пептид типа *А* тормозит секрецию альдостерона, независимо от действия ангиотензина II адренокортикотропного гормона (АКТГ) и калия.

Поэтому предполагают, что физиологическая роль натрийуретического пептида типа A (а также пептида типа B) заключается в том, они противодействуют за-

держке воды, вызываемой РАС, САС и аргинин-вазопрессином.

Натрийуретический пептид типа *A*, одним из стимулов секреции которого является эндотелин-1, в свою очередь, ослабляет вазоконстрикторное действие эндотелина-1 и его высвобождение из эндотелиальных клеток

Эффекты ангиотензина II и натрийуретического пептида типа A на центральную нервную систему противоположны. В то время, как ангиотензин I стимулирует жажду и секрецию аргинин-вазопрессина (антидиуретического гормона), натрийуретический пептид типа A, напротив, подавляет спонтанную и вызванную ангиотензином II жажду и тормозит высвобождение аргинин-вазопрессина.

У больных с ХСН инфузия натрийуретического пептида типа *А* приводит к снижению давления в правом предсердии и давления заклинивания легочных капилляров, уменьшению общего (системного) сосудистого сопротивления, увеличению ударного объема, натрийуреза и диуреза, а также к торможению функциональной активности РАС и симпатической нервной системы. Вазодилатация и натрийурез, вызываемые натрийуретическим пептидом типа *А*, не сопровождаются активацией вазоконстрикторных и антинатрийуретических нейро-гуморальных систем.

Для понимания роли натрийуретического пептида типа A в патогенезе XCH важное значение имеют данные, свидетельствующие о том, что его плазменные уровни повышаются у больных с бессимптомной дисфункцией ЛЖ без активации РАС. Следовательно, можно предполагать, что гиперсекреция натрийуретического пептида типа A замедляет появление клинических симптомов и признаков XCH у больных с систолической дисфункцией ЛЖ, подавляя активацию РАС.

По некоторым наблюдениям, уровни предсердного натрийуретического пептида у больных с XCH имеют прогностическое значение. Так, в исследовании *CON-SENSUS* плазменные уровни предсердного натрийуретического пептида коррелировали со смертностью в группе больных с XCH, получавших плацебо.

Кроме того, определение его уровней рекомендуется для исключения сердечной недостаточности у больных с отечным синдромом [9,18]. Обнаружение нормальных уровней предсердного натрийуретического пептида или его неактивного N-концевого фрагмента у

Российский кардиологический журнал № 2 (40) / 2003

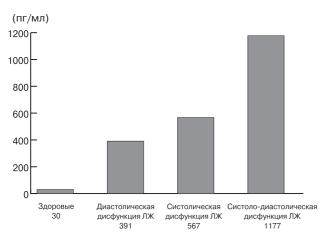
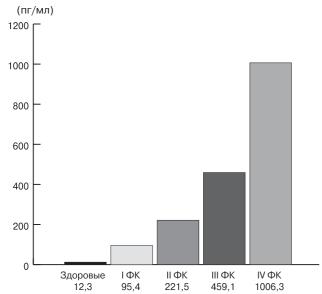



Рис. 1. Средние значения плазменных концентраций уровней натрийуретического пептида типа В у больных с ХСН различного функционального класса

больного с подозрением на сердечную недостаточность с высокой степенью вероятности позволяет исключить дисфункцию ЛЖ, и поэтому делает ненужным проведение эхокардиографического исследования.

Натрийуретический пептид типа В (или мозговой/желудочковый натрийуретический пептид) напоминает по структуре натрийуретический пептид типа A, но состоит из 32 аминокислотных остатков. Натрийуретический пептид типа В впервые был обнаружен в головном мозге свиньи в 1988 г. Последующие исследования показали, что он секретируется желудочками в ответ на дилатацию и напряжение стенок, однако небольшие его количества могут высвобождаться также из миоцитов предсердий. Циркулирующие уровни натрийуретического пептида типа В повышены у больных с дисфункцией ЛЖ, независимо от наличия или отсутствия клинических проявлений. Высвобождение на-

трийуретического пептида типа В прямо пропорционально степени перегрузки ЛЖ объемом или давлением. Уровни как предсердного, так и мозгового натрийуретических пептидов, повышаются пропорционально тяжести ХСН, оцениваемой по степени ограничения переносимости физических нагрузок [1, 9, 11]. Плазменные концентрации натрийуретического пептида типа B являются независимым от других факторов показателем повышенного конечного диастолического давления в ЛЖ и соответствуют функциональному классу больного с ХСН (рис. 1) [5, 7, 8].

Недавно показано, что плазменные уровни натрийуретических пептидов типа A и типа B коррелируют со степенью как систолической, так и диастолической дисфункции ЛЖ (т.е. с величиной фракции выброса и отношением E/A) (рис. 2).

Гемодинамические и нейроэндокринные эффекты натрийуретических пептидов типов А и В в общем сходны, однако инфузия натрийуретического пептида типа В не приводит к снижению плазменных уровней норадреналина.

По некоторым наблюдения, у больных с ХСН плазменные уровни натрийуретического пептида типа Bимеют более важное прогностическое значение, чем уровни предсердного натрийуретического пептида [9]. Определение уровней мозгового натрийуретического пептида также рекомендуется для исключения сердечной недостаточности у больных с отечным синдромом, особенно в общей популяции [3, 4, 10].

Натрийуретический пептид типа С (или сосудистый/почечный натрийуретический пептид) впервые был обнаружен в головном мозге свиньи в 1990 г., однако последующие исследования показали, что главным его источником являются эндотелиальные клетки сосудистой стенки. При иммунохимическом исследовании натрийуретический пептид типа C обнаружен в миокарде как предсердий, так и желудочков, а также в почках. Натрийуретический пептид типа C имеет структурное сходство с натрийуретическими пептидами типа A и типа B. Различают две его изоформы — одна состоит из 53 аминокислотных остатков, а другая из 22. Первая преобладает в тканях, вторая — в плазме и спинномозговой жидкости. Натрийуретический пептид типа C оказывает сосудорасширяющее и антипролиферативное действие, однако в отличие от предсердного и мозгового пептидов он не обладает натрийуретическим действием. Его физиологическая роль неизвестна, но, учитывая его локализацию, предполагают, что он выполняет паракринную функцию, регулируя сосудистый тонус и рост гладкомышечных клеток.

По данным литературы, у больных с умеренной и тяжелой ХСН плазменные уровни натрийуретического Рис. 2. Средние значения плазменных концентраций уров- пептида типа С не повышаются (в отличие от предсердней натрийуретического пептида типа В у больных с ного и мозгового пептидов) [2]. Предполагают, что это диастолической, систолической и систоло-диастолисвязано с тем, что он быстрее, чем два других натрийу-

Рис. 3. Диагностический и терапевтический алгоритм при подозрении на сердечную недостаточность до проведения эхокардиографии

ретических пептида, гидролизуется нейтральной эндопептидазой. Содержание всех трех натрийуретических пептидов в миокарде желудочков у больных с ХСН в среднем в 7-8 раз выше, чем у здоровых лиц.

Натрийуретический пептид типа D (dendroaspis natriuretic peptide) в 1992 г. был выделен из яда древесной змеи (Dendroaspis angusticeps). Физиологическая роль его не установлена. Плазменные уровни натрийуретического пептида типа D повышены у больных с XCH [12, 13].

Таким образом, в основном концентрации натрийуретических пептидов типа А и, особенно, типа В повышаются при повышении давления в полостях предсердий и желудочков при дисфункции ЛЖ и потому могут использоваться в качестве биохимического маркера сердечной недостаточности.

Для диагностики сердечной недостаточности первоначально использовали определение концентраций самого натрийуретического пептида типа A, затем N-концевого участка его предшественника — пропеп-

тида (прогормона). В последние годы для этой цели используется определение содержания в плазме крови натрийуретического пептида типа В, которое точнее отражает давление в полостях желудочков. Иногда определяют содержание не самого пептида, а N-концевого участка его пропептида (прогормона).

Определение плазменных концентраций N-концевого участка натрийуретического пептида типа В является высокочувствительным и специфичным методом диагностики систолической и диастолической дисфункции ЛЖ, особенно у больных с остро развившейся одышкой (чувствительность — 60-95%, специфичность — 75-100%). Стоимость исследования составляет около 1 фунта стерлингов, что намного дешевле, чем эхокардиографическое исследование (60-80 фунтов стерлингов). Поэтому определение плазменных концентраций натрийуретического пептида типа В (или N-концевого участка его пропептида) рекомендуется использовать для скрининга больных с подозрением на сердечную недостаточность (рис. 3).

Таблица 1 Ценность определения плазменных уровней натрийуретического пептида типа В в диагностике систолической дисфункции левого желудочка*

Группа	Чувстви-	Специфич-	Предсказующая	Предсказующая цен-	Распространен-
	тельность (%)	ность (%)	ценность положи-	ность отрицательного	ность систоличе-
			тельного результата (%)	результата (%)	ской дисфункции
					ЛЖ (фракция
					выброса <30%) (%)
Больные 25-74 лет					
Bce	76	87	16	97,5	3,2
С ИБС	84	76	30	97,5	11
Больные і55 лет					
Bce	89	71	16	99,2	5,4
С ИБС	92	72	32	98,5	12,1

 $^{^*}$ — По: Т. McDonagh et al. [10]. Критерий повышения натрийуретического пептида типа В — 18 пг/мл. ЛЖ — левый желудочек.

Российский кардиологический журнал № 2 (40) / 2003

Таблица 2 Ценность определения плазменных уровней натрийуретического пептида типа В в диагностике застойной сердечной недостаточности у ургентных больных*

Уровни натрийуретиче-	Чувствительность	Специфичность (%)	Предсказующая цен-	Предсказующая	Точность
ского пептида типа В	(%)		ность положительного	ценность отрица-	
(пг/мл)			результата (%)	тельного резуль-	
				тата (%)	
(%)					
80	98	92	90	98	95
100	94	94	92	96	94
120	90	96	95	93	94
150	87	97	95	81	93

^{* —} По: Q. Dao et al. [13].

Плазменные концентрации натрийуретического пептида типа В выше 80-100 пг/мл подтверждают диагноз сердечной недостаточности или бессимптомной дисфункции ЛЖ (табл. 1 и 2). У больных острым инфарктом миокарда определение плазменных концентраций натрийуретического пептида типа В (или N-концевого участка его пропептида) предлагается использовать для отбора больных без клинических проявлений сердечной недостаточности, которым показана длительная терапия ингибиторами АПФ [5, 6, 10].

При инструментальном и биохимическом исследовании важное значение имеет диагностика сопутствующих заболеваний и, в особенности, болезней, которые могут симулировать симптомы и признаки сердечной недостаточности или способствовать ее декомпенсации (табл. 3).

В тех случаях, когда диагноз сердечной недостаточности не вызывает сомнений, необходимо оценить тяжесть клинических симптомов и степень ограничения физической активности.

Основные биохимические и инструментальные методы, которые рекомендуется использовать при обследовании больного с подозрением на сердечную недостаточность, приведены в табл. 4.

Рекомендации экспертов AKK/AAC излагаются в определенном порядке.

Класс І. Достоверные доказательства и/или едино-

гласие экспертов в том, что данная процедура или вид лечения полезна и эффективна.

Класс II. Противоречивые доказательства или различные мнения экспертов относительно полезности/эффективности данной процедуры или вида лечения.

Класс IIа. Большая часть доказательств или мнений склоняется в пользу полезности/эффективности данной процедуры или вида лечения.

Класс IIb. Меньшая часть доказательств или мнений склоняется в пользу полезности/эффективности данной процедуры или вида лечения.

Класс III. Достоверные доказательства и/или единогласие экспертов в том, что данная процедура или вид лечения бесполезны, эффективны, а в некоторых случаях могут быть вредными.

Рекомендации основываются на доказательствах, если таковые имеются. Различают три степени доказательности данных, на которых основываются рекомендации экспертов АКК/ААС. Уровень доказательности А — данные получены в нескольких рандомизированных клинических исследованиях. Уровень доказательности В — данные получены в одном рандомизированном клиническом исследовании или в нерандомизированных исследованиях. Уровень доказательности С — рекомендации основаны на согласованном мнении экспертов.

 Таблица 3

 Выявление заболеваний, которые могут симулировать сердечную недостаточность или вызывать ее обострение

Заболевания	Инструментальные и лабораторные методы, рекомендуемые для их диагностики
Бронхо-легочные заболевания	Рентгенография органов грудной клетки
	Максимальная скорость выдоха (FEV), объем форсированного выдоха (FEV1)
	или функциональные легочные пробы
	Общий анализ крови (для выявления вторичного эритроцитоза)
Болезни почек	Анализ мочи
	Биохимическое исследование крови (креатинин, мочевина, калий, натрий)
Болезни печени	Биохимическое исследование крови (альбумины, билирубин, аланиновая и аспарагиновая
	аминотрансферазы, щелочная фосфатаза, g-глютаминтранспептидаза)
Анемия	Общий анализ крови
Болезни щитовидной железы	Тироксин (Т4), трииодтиронин (Т3), тиреотропный гормон (ТТГ)

Таблица 4 Рекомендуемые биохимические и инструментальные методы у больного с подозрением на сердечную недостаточность (М.Копstam и соавт., 1994)

Метод диагностики	Находка	Возможный диагноз	
Электрокардиография	Острые изменения сегмента ST и зубца T	Ишемия миокарда	
	Мерцание предсердий, другая тахиаритмия	Заболевание щитовидной железы или	
		сердечная недостаточность, вызванная	
		быстрым ритмом сокращения желудоч-	
		КОВ	
	Брадиаритмии	Сердечная недостаточность, вызванная	
		медленным ритмом сердца	
	Инфаркт миокарда в анамнезе (например, нали-	Сердечная недостаточность, связанная	
	чие патологических зубцов Q)	с гибелью части сократительных	
		волокон	
	Низкие вольтажи зубцов R	Выпот в полость перикарда	
	Гипертрофия левого желудочка	Диастолическая дисфункция левого же-	
		лудочка	
Общий анализ крови	Анемия	Сердечная недостаточность, вызванная	
		или усугубляемая сниженной кислород-	
		транспортной способностью крови	
Анализ мочи	Массивная протеинурия	Нефротический синдром	
	Эритроцитурия или цилиндрурия	Диффузный гломерулонефрит	
Сывороточный креатинин	Повышенные уровни	Перегрузка объемом вследствие почеч-	
		ной недостаточности	
Сывороточные альбумины	Повышенные уровни	Увеличение объема внесосудистой жид-	
		кости вследствие гипоальбуминемии	
		(например, при циррозе печени, нефро-	
		тическом синдроме)	
Тироксин (Т4) и тиреотропный	Аномально повышенные уровни	Сердечная недостаточность, вызванная	
гормон (ТТГ) (определяют толь-		или усугубляемая гипо- или	
ко при наличии мерцания		гипертиреозом	
предсердий, симптомов за-			
болевания щитовидной			
железы или у больных			
старше 65 лет)			

Эксперты AKK/AAC (2001) рекомендуют необходимый объем обследования больных с XCH, в зависимости от стадии заболевания.

Больных с СН рекомендуется оценивать следующим образом:

Класс I. Тщательный сбор анамнеза и физикальное исследование для диагностики сердечных и несердечных заболеваний, которые могут привести к развитию XCH или ускорить ее прогрессирование (уровень доказательности C).

Начальная и повторная оценка способности больного выполнять привычную и желаемую повседневную нагрузку (уровень доказательности C).

Начальная и повторная оценка водного баланса (уровень доказательности С).

Общий анализ крови, анализ мочи, сывороточные электролиты (включая кальций и магний), определение содержания мочевины, креатинина и глюкозы в крови, функциональные печеночные

пробы и тиреотропный гормон (уровень доказательности С).

Повторное определение содержания электролитов в сыворотке и функции почек (уровень доказательности

Регистрация 12 отведений ЭКГ и рентгенография органов грудной клетки (уровень доказательности С).

Двухмерная эхокардиография с допплерографическим исследованием или радионуклидная вентрикулография для оценки систолической функции ЛЖ (уровень доказательности С).

Катетеризация сердца с коронарной ангиографией у больных со стенокардией, которые являются кандидатами для проведения операции по реваскуляризации миокарда (уровень доказательности В).

Класс На Катетеризация сердца с коронарной ангиографией у больных с болями в грудной клетке, у которых не оценивалось состояние коронарного русла и которые не имеют противопоказаний к проведению опе-

Российский кардиологический журнал № 2 (40) / 2003

рации по реваскуляризации миокарда (уровень доказательности С).

Катетеризация сердца с коронарной ангиографией у больных без стенокардии, но с доказанной ИБС или с подозрением на нее, которые являются кандидатами для проведения операции по реваскуляризации миокарда (уровень доказательности С).

Неинвазивное исследование с целью диагностики ишемии и жизнеспособности миокарда у больных без стенокардии, но с доказанной ИБС или с подозрением на нее, которые являются кандидатами для проведения операции по реваскуляризации миокарда (уровень доказательности С).

Проба с максимальной физической нагрузкой с измерением газообмена и /или насыщения крови кислородом для того, чтобы определить, не является ли ХСН причиной ограничения физической активности, если вклад ХСН не ясен (уровень доказательности С).

Проба с максимальной физической нагрузкой с измерением газообмена и /или насыщения крови кислородом для выявления больных с высоким риском, которые являются кандидатами для трансплантации сердца или других специальных методов лечения (уровень доказательности В).

Эхокардиография у бессимптомных близких родственников больных с идиопатической дилатационной кардиомиопатией (уровень доказательности С).

Повторное измерение фракции выброса ЛЖ у больных, клиническое состояние которых изменилось или у кого развилось клиническое событие, или кому назначена терапия, которая оказывала существенное влияние на функцию сердца (уровень доказательности С).

Скрининг на выявление гемохроматоза сердца (уровень доказательности С).

Литература

- Yamamoto K., Burnett J. // Superiority of Brain Natriuretic Peptide as a Hormonal Marker of Ventricular Systolic and Diastolic Dysfunction and Ventricular Hypertrophy. Hypertension, 1996; Vol 28, No 6, 988-994.
- 2. Wei C.M., Heublein D.M. et al. // Natriuretic peptide system in human heart failure. Circulation. 1993; 88: 1004-1009.
- 3. Cowie M., Pentson H. et al. A population survey of the incidence and aetiology of heart failure. Eur. Heart J. 1996; 17: 131 (abstr).
- Omland T., Aakvaag A., Vik-Mo H. Plasma cardiac natriuretic peptide determination as a screening test for the detection of patients with mild left ventricular impairment. Heart 1996; 76: 232-237.
- Dao Q., Krishnaswamy P. et al. // Utility of B-Type Natriuretic Peptide in the Diagnosis of Congestive Heart Failure in Urgent-Care Setting. JACC, 2001, Vol 37, No 2,379-385.
- Dickstein K. // Natriuretic peptide in detection of heart failure. Lancet, 1998; 35: 3-4.
- Maeda K., Takayoshi T. et al. // Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J 1998; 135: 825-832.
- 8. Clerico A., Iervasi G. et al. // Circulating levels of cardiac natri-

Определение антинуклеарных антител, ревматоидного фактора в сыворотке крови, ванинилминдальной кислоты и метанефринов в моче у некоторых больных (уровень доказательности C).

Класс IIb. Неинвазивные исследования с целью определения вероятности ИБС у больных с дисфункцией ЛЖ (уровень доказательности С).

Проба с максимальной физической нагрузкой с измерением газообмена, чтобы подобрать подходящую программу физических тренировок (уровень доказательности С).

Эндомиокардиальная биопсия у больных, у которых подозреваются воспалительное или инфильтративное поражение сердца (уровень доказательности С).

Оценка ВИЧ-(уровень доказательности С).

Класс III. Эндомиокардиальная биопсия в качестве рутинного метода при обследовании больных с XCH (уровень доказательности C).

Холтеровское мониторирование ЭКГ или электрокардиография с усреднением сигнала (уровень доказательности C).

Повторная коронарная ангиография или неинвазивное исследование с целью диагностики ишемии у больных, у которых ИБС была раньше исключена в качестве причины дисфункции ЛЖ (уровень доказательности С).

Повторное определение циркулирующих уровней норадреналина или эндотелина (уровень доказательности C).

Таким образом, определение содержания предсердного и мозгового натрийуретических пептидов (или их фрагментов) в плазме крови открывает новые возможности в диагностике сердечной недостаточности.

- uretic peptide (AND and BNP) measured by highly sensitive and specific immunoradiometric assays in normal subjects and in patients with different degrees of heart failure. J Endocrinol Invest 1998; 21: 170-179.
- Tsutamoto T., Wada A. et al. // Attenuation of compensation of endogenonous cardiac natriuretic peptide system in chrinic heart failure: prognostic role of plasma brain natriuretic peptide concentration in patients with chronic symptomatic left ventricular dysfunction. Circulation 1997; 96: 509-516.
 McDonagh T.A., Robb S.D. //Biochemical detection of
- McDonagh T.A., Robb S.D. //Biochemical detection of left-ventricular systolic dysfunction. Lancet 1998; 351: 13.
- Davidson N.C., Naas A.A. et al. // Comparison of atrial natriuretic peptide, B-type natriuretic peptide, and N-terminal proatrial natriuretic peptide as indicators of left ventricular systolic dysfunction. Am J Cardiol 1996; 77: 828-831.
- Nathisuwan S., Pharm. L. et al. // A Review of Vasopeptidase Inhibitors: A New Modality in the Treatment of Hypertension and Chronic Heart Failure. Pharmacotherapy 2002, 22(1): 27-42.
- Schiger J.A., Heublein D.M. et al. // Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin. Proc. 1999; 74: 126-130.

Поступила 11/01-2003