It is suggested that seeking stationary fragments for SD and mean ISI calculation is not necessary.

REFERENCES

- 1. Baldissera F, Gustafsson B (1974) Firing behaviour of a neuron model based on the afterhyperpolarization conductance time course and algebraic summation. Adaptation and steady state firing. Acta Physiol Scand 92:27-47
- Kudina LP, Alexeeva NL (1992) After-potentials and control of repetitive firing in human motoneurones. Electroencephal Clin Neurophysiol 85:345–353
- Piotrkiewicz M (1999) An influence of AHP on the pattern of motoneuron rhythmic activity. J Physiol (Paris) 93:125–133
- 4. *Schwindt P, Calvin W* (1972) Membrane-potential trajectories between spikes underlying motoneuron firing rates. J Neurophysiol 35:311–325

УДК 577.3

А.Л. Туманова, А.И. Еременко

РОЛЬ МИКРОЭЛЕМЕНТОЗОВ В ЭТИОПАТОГЕНЕЗЕ ЗАБОЛЕВАНИЙ ГЛАЗ

В настоящее время наиболее информативным методом обследования больных является метод плазменно-эмиссионного анализа с индуктивно связанной аргоновой плазмой (система GB — Астралия), который дает информацию о 24-25 микроэлементах одновременно, т.е. обо всех эссенциальных и токсичных микроэлементах, оказывающих влияние на жизнедеятельность человеческого организма.

Этот метод был применен авторами совместно с Московским научномедицинским центром по изучению микроэлементозов для определения характера микроэлементозов у больных с сосудистыми заболеваниями глаз и их связей с общими заболеваниями при обследовании группы больных с уже установленным ранее глазным диагнозом..

Для исследования глазного дна в свете различного спектрального состава мы пользовались офтальмохромоскопией А.М. Водовозова со следующими светофильтрами: СЗС – 18 (длина волны от 400 до 600 ммк) для офтальмоскопии в бескрасном свете; КС-10 (длина волны от 560 до 700 ммк) для офтальмоскопии в красном свете. При максимально узкой ирис-диафрагме получали зону непрямого освещения для исследований глазного дна в непрямом красном свете. ЖС – 17 в сочетании со светофильтром СЗС (для офтальмоскопии в желто-зеленом свете); ПС-11 в сочетании с КС – 10 (для офтальмоскопии в пурпурном свете).

Офтальмохромоскопия с контрастом. Больному с максимально расширенным зрачком давали выпить раствор флюоресциина натрия (1,5 гр. вещества на 100,0 мл дистиллированной воды). Через 30-60 минут (в зависимости от возраста) проводили офтальмохромоскопию, пользуясь, синим фильтром.

Прямую офтальмоскопию проводили с помощью ручного электрического офтальмоскопа со световодом и на щелевой лампе фирмы «Карл Цейс Йена», с применением в ряде случаев линзы Гольдмана.

Для определения КЧСМ больной смотрит одним глазом в трубку, на дне которой находится источник мигающего красного света. Частоту мелькания постепенно увеличивают до тех пор, пока больной перестает различать мелькания. На электронном индикаторе загораются цифры частоты слияние мельканий в герцах. Измерение повторяют трижды, медленно результат усредняют.

Снижение КЧСМ свидетельствуют о патологии на любом уровне зрительнонервного анализатора. (Е.Н. Семеновская и др.)

Для определения зрительных функций, основанных на явлениях энтропии (способность видеть проекцию желтого пятна на плоскости и оценивать положение этой проекции относительно точки фиксации) и при мутных средах использовался лазерный анализатор рефракции (ЛАР-2), основу которого составляет феномен лазерной зернистости. Исследования проводились в темной комнате. После объяснения исследуемому предлагалось смотреть на экран вначале более здоровым глазом. Это давало возможность легче понять и видеть вариант движения лазерной зернистости на экране в течение 1-2 мин.

По ходу исследования устанавливали, видит ли пациент зернистость, ее цвет, направление движения по четырем меридианам. По этим критериям и судили о результатах с определением рефракции.

Анализируемый клинический материал, полученный у лиц, страдающих сосудистой патологией глаз (650 человек, 1300 глаз), также обработаны методом дисперсионного анализа. Анализ включал в себя определение следующих признаков: 23-25 микроэлементов, возраст, пол, вид глазной патологии, острота зрения, поле зрения, ВГД, КЧСМ, офтальмохромоскопию с контрастом, анализов крови на сахар, холестерин, общий анализ крови, время свертываемости, ЭКГ, ЭЭГ, доплерографию и др., а также методы лечения и их результаты.

Достоверность колебалась от << 0,001 до< 0,5, а построение логарифмическилинейной модели по ведущим признакам, позволил выявить наиболее существенные признаки, влияющие на возникновение сосудистых заболеваний глаз, т. е. позволяет выделить группу риска и наиболее значимые комбинации микроэлементного дисбаланса.

Для определения характера микроэлементозов при глазных патологиях мы обследовали на микроэлементозы 650 человек с уже установленным ранее глазным диагнозом. Характер изменения содержания микроэлементов у группы пациентов с различной глазной патологией представлен в табл. 1.

Таблица 1
Микроэлементозы у группы пациентов с глазной патологией (650 чел.)

Вид патологии	%	Дефицит	Избыток	"0"
				Значение
Диабетическая	27	Селена, марганца	Фосфора, натрия	Титан
ретинопатия		хрома, кобальта	алюминия, кадмия,	
		цинка, ваннадия	стронция.	
Из них с нейропатией	11	Молибдена, меди	Кальция, натрия	Ртуть
		калия, кальция	свинца, железа	
Атеросклеротическая	37	Цинка, селена	Марганца, калия	Кадмий,
ангиопатия		молибдена	свинца, алюминия	олово

Гипертоническая ангиопатия	33	Селена, магния ваннадия	Натрия, фосфора алюминия, стронция	
Дистрофия Сетчатки	27	Селена, цинка магния, меди, кальция	Алюминия, железа	Кадмий, олово
Катаракта	23	Селена, цинка фосфора	Кальция, свинца	Ртуть
Гипотоническая ангиопатия	19	Хрома, марганца, селена, фосф.	Кадмия, натрия, свинца	Олово
Ишемические нейропатии	7	Селена, цинка калия, молибдена	Кальция, натрия, свинца, алюминия, магния	
Глаукома	14	Селена	Алюминия	Ртуть, кадмий
Внутриглазная гипертензия	11	Селена, цинка кобальта, магния, кальция	Марганца, фосфора, натрия, калия, алюминия	Титан
Нарушение аккомадации, "пресбиопия" до 40 лет	13	Селена, кальция магния, хрома меди	Железа	Олово

Из обследованных 650 человек, с уже установленной ранее глазной патологией - 27% (176 человек) страдали диабетической ретинопатией, а 11% (20 человек) из них — страдали диабетической нейропатией, чаще с клиническими проявлениями передней ишемической и задней ишемической нейропатии.

В этой группе определялся глубокий дефицит хрома, селена, цинка, калия, ванадия, умеренно выраженный дефицит марганца, молибдена, меди, кальция, кобальта, избыток фосфора, натрия, часто алюминия, реже кадмия, стронция и нулевое содержание титана. При сопутствующих нейропатиях к дефицитам добавлялся магний, а в избыточном содержании выявлен кальций, натрий, свинец, алюминий, железо, иногда нулевое содержание ртуги.

В зависимости от наличия сопутствующей патологии добавлялись соответственно и нарушения микроэлементов.

В нашем теперешнем представлении после проведенных нами исследований термин «диабет» на самом деле относится к двум очень разным болезням.

Диабет I типа (15%) представляет собой приобретенное аутоиммунное заболевание, при котором поджелудочная железа теряет способность вырабатывать инсулин, т.е. эта группа пациентов нуждается в инъекциях инсулина.

Более распространенный диабет П типа (75%) характеризуется повышением сахара в крови, главным образом из-за неспособности организма эффективно использовать инсулин (резистентность к инсулину). Поэтому применение в лечении этого типа диабета добавочным инсулином, особенно при неэффективности таблетированных форм сахароснижающих препаратов, приводит к ускорению сосудистых осложнений и развитию нейропатий.

Есть только два органа, которые в конечном итоге определяют, быть сахарному диабету или не быть – поджелудочная железа и печень. Именно они часто "по собственной вине", а часто и по вине других органов создают практически всю клиническую картину сахарного диабета.

В связи с этим и, опираясь на проведенные нами исследования, мы предлагаем классификацию следующих основных форм сахарного диабета:

- инсулинозависимый сахарный диабет (І тип);
- инсулинонезависимый сахарный диабет (II тип) (с ожирением и без ожирения):
- инсулиннезависимый сахарный диабет тиреотоксический;
- сахарный диабет III типа (сочетание сахарного диабета I и II типов);
- сахарный диабет, вызванный токсическим микроэлементозом (накоплением в организме избытка токсичных металлов);
- гиперинсулинизм или «диабет» низкого содержания сахара в крови.

Цель лечения, по существу, сводится во всех случаях к поддерживанию нормального содержания сахара в крови, помогая организму метаболизировать его более эффективно, патогенетической микроциркуляторной и ноотропной терапией.

На основании полученных нами данных были внедрены в практику новые этапы в комплексные традиционные курсы лечения диабетических ангиоретинопатий и нейропатий. Пациенты с повышенным содержанием сахара в крови и высокими дозами антидиабетических препаратов получали следующие мономинералы, питательные вещества и аювердические травы (рис.1,а).

	7 00 1000	T	
Хром	500 – 1000мкг	Хром	200 - 600мкг
Ванадил сульфат	30 - 60мг	Цинк	50 - 100мг
Липоевая к-та	300 - 600мг	Магний	300 - 600мг
Кофермент Q-10	90 - 180мг	Липоевая к-та	150 - 300мг
Биотин	7 - 15мг	Кофермент Q-10	45 - 90мг
Инозит	800 – 1600мг	Биотин	2 - 4мг
Цинк	90 - 180мг	Незамен. масла	7200 мг
Никотинамид	300 - 600мг	Селен	100 - 200мг
Gimnea sylvestre	200 - 400мг	Витамин В-6	75 - 150мг
Пажитник	100 - 200мг	Витамин С	1 - 2Γ
Таурин	1500 – 3000мг	Витамин Е	300 - 600м.Е
Фолиевая кислота	2 - 4мг	Карнитин	500 - 1000мг
Полезные бактерии	1 - 2к.	Витамин А	10000 - 2000м.Е
Лизин	400 - 800мг	Марганец	25 - 50мг
Чеснок	2400 – 4800мг	Кальций	1000мг
Кальций+магний	500 / 250мг	Себецинат меди	2 - 4мг
Экстракт из листьев	360мг	Корень солодки	1 - Зкапс.
гинкобилоба		Элеутерококк	100 - 200мг
		Экстракт из	60мг
		листьев	
		гинкобилоба	

a

Puc.1

б

После достижения стабилизации содержания сахара в крови, как правило, через 2-3 недели пациенты переводились на прием поддерживающего профилактического комплекса (рис.1,б).

Эти комплесы применялись соответственно стадиям и формам диабетических ретинопатий, расширялись или сокращались в индивидуальных вариантах с учетом имеющихся сопутствующих заболеваний. Пациентам также был изменен и подобран характер питания в индивидуальном варианте.

Кроме этого, были внесены новые направления и в местных комплексах лечения — это непосредственное воздействие лазерным излучением стимулирующего действия, как на орган зрения, так и на орган, соответственно форме сахарного диабета (поджелудочная железа, печень, щитовидная железа, а при нейропатиях зрительного нерва — проекция внутренней сонной артерии, локтевой вены, шейных отделов позвоночника). Также широко использован метод лазерофоррезов с солкосерилом, эмаксипином, калий йодом, ноотропилом и др. медикаментозными растворами как местно, так и в проекции указанных выше органов.

В результате целевого подхода к лечению, мы добились неожиданно высоких результатов, каких ранее не получали у других обследуемых групп в лечении диабетических нейропатий и ангиопатий и показали высокий процент клинической эффективности - 87%.

Сроки наблюдения за этой группой составили от 8 месяцев до 2,6 лет.

Оценка результатов проводилась традиционными методами и повторным обследованием на микроэлементный состав.

Помимо улучшения зрительных функций и стабилизации сахара в крови, отмечено улучшение общего соматического состояния, подтвержденное также традиционными обследованиями – показатели крови, мочи, ЭКГ, энцефалографии, доплерографии, ультразвуковыми исследования и др., используемые как этапы промежуточного контроля, выравнивание микроэлементного дисбаланса.

У 27 пациентов сняты показания к применению инъекционного инсулина, так как причиной развития сахарного диабета оказалось избыточное содержание токсичного металла (алюминий, свинец).

Поэтому после этапной детоксикации организма отпала необходимость в применении этого препарата, (показатели сахара крови стали нормальными). 4 пациента из этой группы страдали тяжелой формой диабетической ангиопатии и нейропатией зрительного нерва.

В результате стабилизации показателей сахара крови и выведению из организма токсичных металлов, выравниванию микроэлементного дисбаланса, мы получили стабилизацию и процесса на глазном дне, а, следовательно, и стабилизацию зрительных функций. У 72 пациентов с диабетической ангиопатией сняты показания к применению сахароснижающих препаратов за счет выравнивания микроэлементного дисбаланса.

Однако пациенты этой группы принимают постоянно микроэлемент ванадий в комбинации с селеном, который снижает уровень сахара в крови, действует в организме подобно инсулину, тем самым помогая клеткам более эффективно усваивать сахар, также уменьшает концентрацию ЛНП-холестерина и триглицеридов.

Эффективен в применении при диабете первого и второго типа. 16 пациентов из этой группы страдали диабетической ангиопатией и нейропатией, которые также показали постепенное улучшение, как зрительных функций, так и стабилизацию процесса на глазном дне. У 7 пациентов сняты показания к панретинальной лазеркоагуляции.

Следует также отметить, что у пациентов этих двух групп сроки стабилизации процесса колеблются от 6 мес. до 2,6 лет. Период стабилизации чаще сокращался у пациентов, которые нестабильно принимали назначенные им схемы коррекции.

И последняя группа 77 человек с умеренно выраженными микроэлементозами и не пролиферативными стадиями диабетических ангиопатий составляют группу наблюдения, которая не имеет тенденцию к переходу в пролиферативную стадию заболевания.

Таким образом, примененный новый метод обследования оказался наиболее информативным и дает информацию обо всех эссенциальных и токсичных микроэлементах, оказывающих основное влияние на жизнедеятельность человеческого организма.

Это позволяет разработать совершенные методы диагностики и лечения на уровне прогноза и профилактики не только диабетических ретинопатий и нейропатий, но и других тяжелых заболеваний глаз, в основе которых лежит нарушение обмена веществ.

Предложенные же нами новые методы лазерной терапии, комплексного лазерно-медикоментозного воздействия как на орган зрения, так и на другие органы одномоментно, позволит рационально воздействовать на все патогенетические звенья различных форм сахарного диабета.

Как показали проведенные нами клинические наблюдения, этот комплексный подход дает эффективность в 87 % случаев.

Следующую большую группу составляют пациенты с дистрофиями сетчатки.

В основе любых дистрофий лежит нарушение обмена в тканях и непосредственно в отдельной клетке.

До недавнего времени клиническая офтальмофармакология не обладала препаратами, которые непосредственно нормализовали бы клеточный обмен. Из имеющегося арсенала медикаментов можно было выбрать препараты, воздействующие только на некоторые звенья макулодистрофий.

В настоящее время благодаря новым методам диагностики и лечения, внедренными нами в практику (обследование на микроэлементозы, применение лазерофоррезов как местно, так и на органы, участвующие в патологическом процессе), мы показали высокий процент клинической эффективности (87%) при этой тяжелой патологии зрения, часто ведущей к слабовидению и слепоте. Изучение особенностей микроэлементных нарушений у группы с макулодистрофиями позволило применить новые методы лечения: внутривенное введение раствора тауфона и назначением следующего перорального комплекса (рис.2).

Кроме этого, в настоящее время в практику лечения мы внедрили и биорегуляторы как локального действия (офталамин), так и биорегуляторы патогенетических звеньев заболевания - сосудов (вазаламин), мозга (церебрамин), эпифамин (биорегулятор эндокринной системы), тимусамин (биорегулятор иммунной системы) и др., содержащих большое количество микроэлементов естественного происхождения.

Это новый класс препаратов, способных восстанавливать функциональные нарушения и препятствовать развитию патологических процессов в тех органах и тканях, из которых они получены и разработаны Институтом биорегуляции и геронтологии для предупреждения и коррекции инволюционных процессов, являющихся причиной преждевременного развития возрастной патологии и старения, с применением пептидных биорегуляторов в форме пищевых добавок, получивших название "цетамины".

Цинк	60 –120 мг
Бета-каротин	
(натуральный)	40000 - 80000 межд.ед.
Лютеин	10 − 20 мг
Экстракт Гинко билоба	240 – 360 мг
Экстракт черники	250 – 500 мг
Таурин	1500 – 3000 мг
Пикногенол	80 – 160 мг
Липоевая кислота	100 – 200 мг
N-ацетилцистеин	500 — 1000 мг
Витамин А	20000 – 40000 межд.ед.
Витамин Е	600 – 1200 межд. ед.
Селен	100 – 200 мкг

Puc.2

Цетамины представляют собой сбалансированные комплексы биологически активных веществ направленного (органоторопного) действия. Выделены из органов и тканей животных, включающие физиологические концентрации минеральных веществ, микроэлементов и витаминов в легкоусвояемой форме.

Этим же институтом разработаны препараты в жидкой стерильной форме для местного применения — это кортексин и ретиналамин, которые вводятся оперативным путем в ретробульбарное пространство. В настоящее время я на стадии внедрения и этого вида лечения.

Следующую большую группу составляют пациенты с глаукомой. Из этой группы 14% (91чел.) страдали глаукомой и определялся глубокий дефицит селена, избыток алюминия, "0" значение ртути или кадмия. В зависимости от наличия сопутствующей патологии добавлялись соответственно и нарушения содержания разных микроэлементов.

На основании полученных данных и были разработаны и внедрены в практику новые этапы в комплексных традиционных курсах лечения глаукомы.

Пациенты получали мономинерал селен в дозе 50-100 мкг в день в комбинации с витамином Е, т.к. являются синергистами. Это значит, что вместе они сильнее, чем сумма равных частей. В качестве витамина Е применен проальфатокоферол натурального производства, выработанный из икры лососевых и жиров морских рыб и представляет собой простогландины 3-го ряда, состоящих из полиненасыщенных жирных кислот семейства Омега-3 — "Биолонгевит". Помимо этого в обязательный комплекс входили: витамин A(25000 — 50000 тыс.межд. ед.), витамин C (6 — 12 мг), пчелиная перга (0,25 — 0,5 ч.ложка), рутин (50 — 100 мг).

Эта комбинация препаратов представляет антиоксидантную формулировку и предупреждает или замедляет старение или отвердение тканей из-за окисления, усиливают метаболизм в клеточных мембранах и снижают агрегацию и адгезию, влияют на нормальное функционирование мозга и зрения.

Учитывая тенденцию к накоплению у этой группы токсичного металла алюминия для коррекции применен препарат "Биопротект", который мягко очищает, детоксирует, активизирует обменные процессы, регулирует регенерацию всех защитных систем организма, поддерживает и восстанавливает нервную систему и

систему кроветворения, за счет входящего в него в соответствующей комбинации трав.

Кроме этого, учитывая ведущую роль сосудистого фактора в патогенезе глаукомы, а также наличие практически у всех наблюдаемых в этой группе сопутствующей патологии сосудистого генеза – в схему включен препарат "Биомемоэйд" – экстракт из листьев гинко билоба, который содержит более 40 инградиентов, самый активный ряд которых имеет выраженное действие на микроциркуляцию капиллярного и венозного русла, депонирует кислород, нормализует уровень АТФ, увеличивает устойчивость клеток к гипоксии и т.д. – действует почти на все патогенетические звенья возникновения и течения глаукоматозного процесса.

Пациентам также был изменен и подобран характер питания в индивидуальном варианте.

В результате целевого подхода к лечению мы добились неожиданно высоких результатов, каких ранее не получали у других обследуемых групп в лечении глаукомы и показали высокий процент эффективности – 92%.

Сроки наблюдения за этой группой составили 6-8 мес. Оценка результатов проводилась традиционными методами и повторным обследованием на микроэлементный состав.

Помимо улучшения зрительных функций и стабилизации ВГД, отмечено улучшение общесоматического состояния, подтвержденное традиционными обследованиями – показатели крови, ЭКГ, энцефалографии и др., используемые как этапы промежуточного контроля, выравнивание микроэлементного дисбаланса. У 29 пациентов снижен режим закапывания гипотензивных препаратов, а у 11 пациентов из этой группы сняты показания к оперативному лечению по поводу глаукомы.

В табл. 2 помимо соотношения форм патологии глазного дна отражен и процент клинической эффективности проводимого лечения, который колеблется от 74% до 79%, что составляет в среднем 77%.

Таблица 2

Характеристика соотношения патологии у группы больных с заболеваниями глазного дна и зрительного нерва в лазерном кабинете за 1997-1999 гг.

No	Вид патологии	Кол-во человек	Процент	Проц.клин.эффек
1	Диабетические	163	28	74
	ретинопатии			
2	Ангиоретинопатии и	197	33	78
	заболевания ДЗН			
	различной этиол.)			
3	Макулодистрофии	139	24	76
4	Другие заболевания	51	9	78
	сетчатки			
5	Заболевания сосудистой	6	1	79
	оболочки			
6	Тромбозы и гемофтальмы	31	5	77

Кроме лечебной, проводится консультативная работа как в глазном отделении, так и в других отделениях госпиталя, а также амбулаторного контингента и

пациентов дневного стационара. Данные консультативной работы представлены в табл. 3.

Табл. 3 отражает многопрофильность консультативной деятельности, что позволяет сталкиваться на практике с широким спектром глазной патологии, конечно с большим процентом патологии глазного дна (52%).

 Таблица 3

 Данные консультативной работы по годам

		1		
Наименование отделений	1997	1998	1999	Итого
Глазное	434	483	210	1127
Неврология	93	78	57	228
Гастроэнтерология	32	51	54	137
Кардиология	43	57	43	143
Пульмонология	36	41	14	91
Реанимация	19	11	17	47
Сосудистая хирургия	25	23	25	73
Дневной стационар	39	41	35	115
Амбулаторные	46	37	58	141
Сотрудники	47	61	49	157
Другие больницы	17	54	41	112
Итого:	871	937	514	2322

ЛИТЕРАТУРА

- 1. Микроэлементы в медицине. Республиканский сборник Киев. 1971–1978.
- Пол Бергнер. Целительная сила минералов, особых питательных веществ и микроэлементов. М.: Крон-Пресс, 1998.
- 3. Подколозин А.А., Донцов З.И. Иммунитет и микроэлементы. М.: Медицина, 1994.
- 4. Смоляр В.И. Гипо- и гипермикроэлементозы. Киев: Здоровье, 1989.
- 5. *Морозов В.Г., С.В. Кузнецов* с соавт. Цитамины БАД к пище. Методические рекомендации. М.: 1999.
- Туманова А.Л. Эпидемиология и клиника ЦХРД в Таджикистане. Автореф. Канд.дисс. М.: 1988.
- 7. Туманова А.Л. с соавт. Современные методы диагностики и лечения диабетических ретинопатий. Материалы НПК.: Особенности клинического течения, диагностики и лечения заболеваний у ветеранов войн. Краснодар, 2000.
- 8. *Туманова А.Л.* с соавт. Методы коррекции нарушений минерального обмена. Инф. Листок № 98–27, Краснодарский ЦНТИ, 1998.
- 9. Туманова А.Л. с соавт. Методы диагностики и коррекции нарушений обмена мономинералами. ТРТУ: Материалы Международной НТК «Интелектуальные САПР», Таганрог. 1999. 303 с.
- 10. Туманова А.Л. Особенности течения кератоувеапатий при дизбактериозе и иммунодефиците и новые методы их коррекции. Материалы НПК, Современные лазерные технологии в диагностике и лечении повреждений органа зрения. М.: 1999.
- Туманова А.Л. с соавт. Географические хориопатии. Особенности этиопатогенеза и новые направления в лечении // Сборник научных трудов. Актуальные вопросы патологии сетчатки. Краснолар. 2000.
- 12. Туманова А.Л., Еременко А.И. Особенности диабетических нейропатий ДЗН. Роль микроэлементозов в этиопатогенетических механизмах сахарного диабета и современные методы их лечения.
- 13. Туманова А.Л. Микроэлементозы в этиопатогенезе глаукомы и новые методы коррекции. Материалы Всероссийской НПК «Глаукома на рубеже тысячелетий». М.: 1999.
- 14. Туманова А.Л. Макулодистрофии. Клинико-патогенетические особенности и лечение в геронтологической практике.