УДК 616.152.112 ББК Р 41 (032)

Л. А. Забродина

аспирант, Забайкальский государственный гуманитарно-педагогический университет им. Н.Г. Чернышевского (Чита, Россия), e-mail: vikazabrodina@mail.ru

Е. В. Альфонсова

кандидат медицинских наук, доцент, Забайкальский государственный гуманитарно-педагогический университет им. Н.Г. Чернышевского (Чита, Россия), e-mail: elena-alfonsova@yandex.ru

Роль метаболического ацидоза в развитии нарушений системы гемостаза и возникновении ДВС-синдрома у больных в критическом состоянии¹

С целью изучения и выявления значимости нарушений кислотно-щелочного равновесия в развитии ДВС-синдрома был проведен ретроспективный анализ 30 историй болезни пациентов хирургического профиля с метаболическим ацидозом. Корреляционный анализ позволил выявить статистически значимые обратные корреляции между МНО и концентрацией стандартных бикарбонатов (SB), буферных оснований (BE), tCO $_2$, между ПВ и концентрацией бикарбонатов (HCO $_3$); АЧТВ и tCO $_2$. На фоне коррекции КЩР определились прямые значимые корреляции между концентрацией фибриногена и рH, рО $_2$, SB, BE, tCO $_2$, HCO $_3$, между АЧТВ и SB и обратные между МНО и рCO $_2$, HCO $_3$. Таким образом, метаболические нарушения у больных в критических состояниях являются фактором риска в развитии ДВСсиндрома.

Ключевые слова: кислотно-щелочное равновесие, метаболический ацидоз, критическое состояние, гемостаз, ДВС-синдром.

L. A. Zabrodina

graduate student, Zabaikalsky State Humanitarian Pedagogical University named after N. G. Chernyshevsky (Chita, Russia), e-mail: vikazabrodina@mail.ru

E. V. Alfonsova

Candidate of Medicine, associate professor, Zabaikalsky State Humanitarian Pedagogical University named after N. G. Chernishevsky (Chita, Russia), e-mail: elena-alfonsova@yandex.ru

The Role of Metabolic Acidosis in the Development of Hemostasis System Disorders and the Occurrence of DIC-syndrome in Critical Condition Patients

A retrospective analysis of 30 metabolic acidosis surgical patients' cases was carried out in order to study and identify the significance of disturbances of acid-base balance (ABB) in the development of disseminated intravascular coagulation (DIC). A correlation analysis revealed statistically significant inverse correlations between the International Normalized Ratio (INR) and the concentration of standard bicarbonate (SB), base excesses (BE), total CO₂, between prothrombin time (PT) and concentration of bicarbonates (HCO₃⁻); activated partial thromboplastin time (aPTT) and total CO₂. Against the background of correction of the acid-base balance the study defined direct significant correlations among the concentration of fibrinogen and blood pH, pressure of oxygen (pO₂), SB, BE, tCO₂, HCO₃⁻, between aPTT and SB. Thus, metabolic disorders of patients in critical conditions are a risk factor in the development of DIC-syndrome.

Keywords: acid-base balance (ABB), metabolic acidosis, critical condition, hemostasis, DIC-syndrome.

Нарушения кислотно-основного и водно-электролитного баланса являются скорее правилом, чем исключением у больных, находящихся в отделениях интенсивной терапии. Всегда, когда имеется дисфункция жизненно-важных систем респираторной, сердечно-

Работа выполнена в рамках Государственного задания вузу Минобрнауки РФ, № 4.3604.2011.
© Л. А. Забродина, Е. В. Альфонсова, 2012

сосудистой и мочевыделительной, становится невозможной ауторегуляция баланса кислот, оснований, электролитов и воды. Расстройства водно-электролитного и кислотно-основного баланса, будучи не распознанными и нескорректированными, во многом определяют исход лечения основного заболевания [9; 8; 4; 6].

Согласно данным литературы, продукты анаэробного метаболизма, вызывающие ацидоз, представляют реальную опасность для организма, так как способны не только нарушать функцию, но и приводить к морфологическим изменениям в различных органах и тканях [9; 1; 2]. Накопление молочной кислоты, известной в качестве крупного донора протонов, изменяет гемостатические и реологические свойства крови, усиливает гипоксию тканей и уменьшает функцию энергообразования в клетках, вследствие разобщения гликолиза и цикла Кребса снижает ресинтез АТР и ведёт к увеличению энтропии в организме [3; 7; 11]. Нарушение микроциркуляции, тканевая гипоксии, ацидоз лежат в основе развития синдрома полиорганной недостаточности (СПОН) и приводят к развитию тромбогенных осложнений, которые являются одной из основных причин гибели больных [2; 5; 9;12;13]. В связи с этим исследование роли нарушений кислотно-щелочного баланса в развитии ДВС-синдрома и полиорганной недостаточности у больных в критических состояниях имеет большое практическое значение [2; 3; 6; 8].

Целью исследования явилось выявление роли метаболического ацидоза в развитии ДВС-сидрома у больных хирургического профиля в критическом состоянии.

Материалы и методы. Нами был проведен ретроспективный анализ 30 историй болезни пациентов с нарушениями кислотно-основного равновесия в виде ацидоза, которые находились на стационарном лечении в отделениях хирургического профиля краевой клинической больницы г. Читы в период 2008-2010 гг. Возраст больных составил 48 ± 3 года, из них 18 мужчин и 12 женщин. Исследуемую группу составили больные с диагнозами: острый панкреатит и панкреонекроз (20 %); травмы грудной клетки (16,7 %); перитонит различной этиологии (13,3 %) и онкопатология (13,3 %); флегмона стопы (10 %), отравления суррогатами алкоголя (10%), абсцесс прямой кишки (10%), язвенная болезнь желудка (6,7 %). У всех пациентов были диагностированы критические состояния: полиорганная недостаточность 50 %, сепсис и уросепсис 10 %, перитонит 16,7 %, гиповолемический шок 10 %, шоки различного происхождения 13,3 %. Лечение проводилось согласно принятым протоколам, для коррекции метаболического ацидоза применялся 4 % раствор натрия гидрокарбоната и оксигенотерапия (гипербарическая оксигенация). Количество дней, проведённых в стационаре, колебалось от 3 до 10. Группу сравнения составили 30 больных хирургического профиля, сопоставимые по полу и возрасту без нарушений кислотноосновного равновесия.

Оценивались параметры кислотно-щелочного равновесиия (КЩР) и водноэлетролитного баланса (на анализаторе газов и электролитов - RapidPoint 400); рН крови, pCO₂, tCO₂, pO₂, BE, SBC, HCO₃, и показатели системы гемостаза (на коагулометре-Thrombotimer 4); концентрация фибриногена, тромбиновое время (ТВ), протромбиновое время (ПВ), протромбиновый индекс (ПИ), международное нормализованное отношение (МНО), активированное частичное тромбиновое время (АЧТВ), β-нафтоловый тест, количество тромбоцитов. Статистическая обработка данных проводилась с помощью стандартных программ Microsoft Office Excel 2007. Перед проведением расчётов все вариационные ряды тестировались на нормальность при помощи метода оценки коэффициентов асимметрии и эксцесса. Достоверность различий между группами оценивали с помощью непараметрического критерия Манни-Уитни. В качестве достоверных считали результаты при достижении уровня значимости р < 0,05. С целью выявления зависимости между показателями КЩР и гемостаза рассчитывали непараметрический коэффициент корреляции Спирмена. Тесноту связи между признаками оценивали, считая значения коэффициента ≤ 0.3 показателями слабой; значения > 0.3 и < 0.7 – умеренной, а значения ≥ 0.7 – высокой силы связи. Статистически значимыми признавали связи при коэффициенте корреляции $(r_0) \geq 0.37$.

Результаты и их обсуждение. Анализ данных показал, что уже при поступлении в стационар в исследуемой группе изначально были выявлены нарушения КЩР: сдвиг рН крови от 7,3 и ниже, гипоксия, падение pCO_2 , tCO_2 , низкий уровень стандартных бикарбонатов (SB) (в среднем на 6,34 мэкв/ л (27 %) ниже нормы), снижена концентрация бикарбонатов (HCO $_3$), определяются отрицательные значения концентрации буферных оснований (BE), что указывает на их дефицит и подтверждает развитие метаболического ацидоза (табл. 1). По данным коагулограммы отмечалось удлинение АЧТВ и МНО (табл. 2).

Таблица 1 Изменение показателей кислотно-щелочного равновесия у больных хирургического профиля в период стационарного лечения (Медиана [25й; 75 перцентили])

Показатель	Доле	ечения	После лечения		
110казатель КЩР	контроль n=30	исследуемая группа n=30	контроль n=30	исследуемая группа n=30	
рН крови	7,4	7,312*	7,42	7,26*	
	[7,37; 7,46]	[7,24;7,4]	[7,36; 7,44]	[7,156; 7,36]	
рСО, мм рт. ст.	38,2	30,6*	41,6	36,3*	
2	[34,2; 41,45]	[23,9; 43,77]	[41,12; 48,35]	[30,8; 49,57]	
t CO Maran/a	30,85	16,95*	38,95	18,3*	
t CO ₂ мэкв/л	[27; 42,05]	[13,25; 21,42]	[31,7; 46,32]	[14,2; 21,67]	
рО, мм рт. ст.	43,1	45,65	41,6	52	
	[35,8;46,25]	[38,5; 53,4]	[38,12; 48,8]	[40,5; 64,97]	
SB стандартный	24,2	18,5*	26,65	17,3*	
бикарбонат мэкв/ л	[22,9; 27,02]	[15,45; 20,67]	[23,8; 30,6]	[14,35:21,7]	
НСО, ммоль/л	24,9	16*	29,4	16,3*	
,	[23,32; 28,15]	[12,7; 18,8]	[25,67; 32,55]	[12,67; 20,67]	
ВЕ ммоль/л	1,45	-8,7*	2,95	-10,45*	
	[-1,0; 3,35]	[-12,4; -4,77]	[0,22;6,75]	[-14,27; -3]	

Примечание: *-(p < 0.05), различия достоверны между контролем и исследуемой, n- количество больных, **- достоверность различий между исследуемой группой до и после лечения (p < 0.05).

Таблица 2 Показатели гемокоагуляции у больных хирургического профиля в период стационарного лечения (Медиана [25й; 75 перцентили])

Показатели	До леч	ения	После лечения		
	контроль	исследуемая	контроль	исследуемая	
гемокоагуляции	n = 30	группа п=30	n=30	группа п=30	
Фибриноген г/л	363,5	325	335,5	242	
	[260,25; 500,5]	[226,25;512,5]	[277,25; 528,75]	[192,25;471,25]	
ПВ секунды	17,1	17,8	17,8	20,25* **	
	[14,2; 19,52]	[14,62;23,65]	[15,25; 20,85]	[15,85; 32,32]	
ПИ %	56,15	65	60	50,5	
	[45,22; 74,05]	[45; 85]	[42,97; 72,75]	[41; 83,25]	
АЧТВ секунды	31,8	46,8*	34,3	45,2*	
	[25,25; 39,18]	[38,85; 71]	[26,92; 40,75]	[36,52; 51,8]	
ТВ секунды	12,3	14,83	12,6	11,3	
	[10,62; 13,7]	[10,02; 18,12]	[11,42; 14,12]	[10,01;14,15]	
MHO	1,16	1,43*	1,37	1,54* **	
	[1,06; 1,45]	[1,33; 1,95]	[1,1; 1,52]	[1,35; 2,21]	
В-нафтоловый тест (+)	0[0]	0 [0; 1,75]	0[0]	0,5 [0; 2]	
Тромбоциты/мкл	257,5	129*	219,5	87* **	
	[198,25; 335,5]	[111; 260]	[134,5; 288,5]	[62;150]	

Примечание: *-(p < 0.05), различия достоверны между контролем и исследуемой группой, **- достоверность различий между исследуемой группой до и после лечения (p < 0.05).

На фоне проведенной терапии у пациентов исследуемой группы продолжал снижаться pH крови в среднем с 7.3 ± 0.029 до 7.25 ± 0.03 , без динамики оставался уровень стандартных бикарбонатов, буферных оснований, концентрация бикарбонатов. Подобная тенденция говорит о тяжести состояния больных и прогрессировании метаболических расстройств. На фоне нарушений КЩР нарастали сдвиги гемокоагуляции в сторону гипокоагуляции, о чем свидетельствовало удлинение ПВ, АЧТВ, МНО, снижение количества тромбоцитов, что, по-видимому, связано с уменьшением их ζ-потенциала, так как избыток протонов при ацидозе понижает степень диссоциации карбоксильных групп остатков сиаловых кислот и уменьшает величину электростатического заряда клеток, способствуя неспецифическому взаимодействию и склеиванию кровяных пластинок [1]. Отмечено также, что снижение уровня фибриногена в исследуемой группе с 325 до 242 г/л не достигало степени достоверности, возможно, это обусловлено течением системного воспалительного процесса. Разнонаправленные значения в виде удлинения ПВ и укорочения ТВ указывают на вторую стадии ДВС-синдрома (табл. 2). Общая летальность в исследуемой группе составила 100 %. По данным патологоанатомического исследования у всех больных были выявлены признаки геморрагического синдрома во внутренних органах: множественные мелкоточечные, очаговые кровоизлияния в париетальную и висцеральную плевру, эпикард, слизистые и серозные оболочки ЖКТ, мочевыводящие пути, капсулу почек.

Проведённый корреляционный анализ выявил у больных при поступлении обратную зависимость между концентрацией стандартных бикарбонатов (SB) (-0,45), буферных оснований (ВЕ) (-0,413) и международным нормализованным временем; общей углекислотой (tCO₂) (-0,405), уровнем гидрокарбонатов (HCO₂) (-0,468) и протромбиновым временем, а также; tCO₂(-0,37) и AЧТВ. Таким образом, снижение SB, BE, tCO₂ и HCO₃ приводит к гипокоагуляции (удлинение МНО, протромбинового времени, АЧТВ). Несмотря на проведенное лечение, которое включало коррекцию КЩР, инфузионную, оксигенотерапию, применение антикоагулянтов метаболические расстройства нарастали и развивался ДВС-синдром. При этом сохранялась обратная зависимость между SB (-0,450), pCO₃ (-0,361), HCO₃ (-0,415) и МНО. Была выявлена прямая зависимость между концентрацией фибриногена и рН крови (+0,413), SB (+0,561), BE (+0,428), tCO, (+0,438), HCO₃ (+0,555). Падение концентрации фибриногена является одним из основных показателей развития ДВС-синдрома наряду со снижением количества тромбоцитов и появлением в кровотоке Д-димеров [7]. Таким образом, сдвиг рН в кислую сторону, нарастающий дефицит гидрокарбонатов, стандартных бикарбонатов, буферных оснований приводит к снижению концентрации фибриногена. Появление обратной связи между рО, и фибриногеном (-0,467) объясняется, по-видимому, эффектом от оксигенотерапии. Прямая корреляционная связь между SB и AЧТВ (+0,453) связана с некоторым укорочением АЧТВ после лечения (табл. 3, 4).

Таблица 3 Корреляция показателей гемокоагуляции у больных хирургического профиля с метаболическим ацидозом и рН крови, р \mathbf{O}_2 , уровнем стандартного бикарбоната и буферных оснований (\mathbf{r}_2)

Изучаемый	рН крови		pO,		SB		BE	
показатель	До	После	До	После	До	После	До	После
	лечения	лечения	лечения	лечения	лечения	лечения	лечения	лечения
ΔФибриноген	0,016	0,413*	-0,164	-0,467*	-0,126	0,561*	-0,019	0,428*
ΔАЧТВ	0,098	0,341	0,265	0,095	-0,077	0,453*	-0,126	-0,346
ΔΜΗΟ	0,17	-0,087	0,193	0,046	-0,45*	-0,167	-0,413*	-0,162

Примечание: * — зависимость между показателем КЩР крови и показателями гемокоагуляции, r_s — непараметрический коэффициент корреляции Спирмена.

Tаблица 4 Корреляция показателей гемокоагуляции у больных хирургического профиля с метаболическим ацидозом и рСО $_2$, tCO $_3$, HCO $_3$ (r $_4$)

Изучаемый	pCO ₂		tCO ₂		HCO ₃	
показатель	До лечения	После лечения	До лечения	После лечения	До лечения	После лечения
ΔФибриноген	-0,266	0,061	-0,071	0,438*	-0,111	0,555*
ΔАЧТВ	-0,294	0,058	-0,37*	-0,263	-0,283	-0,359
ΔΜΗΟ	0,231	-0,361*	-0,193	-0,315	-0,22	-0,415*
ΔΠΒ	-0,028	0,027	-0,405*	-0,173	-0,468*	-0,282

Примечание: *— зависимость между показателем КЩР крови и показателями гемокоагуляции, r_s — непараметрический коэффициент корреляции Спирмена.

Таким образом, снижение концентрации буферных оснований BE, стандартных бикарбонатов SBC, гидрокарбонатов $\mathrm{HCO_3}^{\mathsf{T}}$, общей углекислоты $\mathrm{tCO_2}$, $\mathrm{pCO_2}$ и сдвиг pH крови в кислую сторону приводят к гипокоагуляции (увеличению MHO, протромбинового времени, AЧТВ, падению концентрации фибриногена и тромбоцитов) и развитию ДВС-синдрома у больных хирургического профиля в критических состояниях.

Несмотря на проведённое лечение, явления метаболического ацидоза и гипокоагуляции нарастали у всех пациентов, что, в конце концов, привело к летальному исходу. Традиционно в тяжёлых случаях ацидоза вводят большие дозы гидрокарбоната натрия, но эффективность этой терапии остаётся низкой. Интересно, что метаболический алкалоз, вызванный введением бикарбонат натрия может привести к существенному увеличение образования лактат. Это связано с тем, что внутриклеточный ацидоз блокирует активность фермента фосфосруктокиназы, тем самым ограничивая скорость гликолиза и способствуя накоплению пирувата и лактата (замыкая порочный круг). Не удивительно, что введение больших доз бикарбоната кажется необходимым, но мало эффективным [12].

Список литературы

- 1. Альфонсов В. В., Бочкарникова Н. В., Альфонсова Е. В. Ацидоз, гемостаз и морфология органов пищеварительной системы. Чита: Изд-во ЗабГПУ, 2005. 120 с.
- 2. Голубцов В. В. Причины возникновения, прогнозирование, диагностика и лечение синдрома полиорганной недостаточности при постгеморрагических и септических состояниях: дис. . . . д-ра мед. наук: 14.00.27. Краснодар, 2005. 257 с.
 - 3. Горизонтов П. Д. Гомеостаз. М.: Медицина, 1981. 576 с.
- 4. Горн М. М., Хейтц П., Сверинген Л. Водно-электролитный баланс / пер. с англ. СПб. : Невский Диалект, 1999. 320 с.
- 5. Кузник Б. И. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме и патологии. Чита : Экспресс-издательство, 2010. 832 с.
- 6. Малышев В. Д. Кислотно-щелочное равновесие и водно-электролитный баланс в интенсивной терапии М.: Медицина, 2005. 228 с.
- 7. Момот А. П., Мамаев А. Н. Диагностика и терапия ДВС-синдрома // Гемостазиология. 2011. № 1. С. 11–26.
- 8. Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. 2-е изд. М. : Медицина, 2006.544 с.
 - 9. Рябов Г. А. Синдромы критических состояний. М.: Медицина, 1994. 288 с.
 - 10. Шутеу Ю. Шок. Бухарест: Военное издательство, 1981. 424 с.
- 11. Abbreviated laparotomy and planned reoperation for critically injured patients / Burch J. M. et al. // Ann. Surg. 1992. Vol. 215(5). P. 476–484.
 - 12. Pasvol G. The treatment of complicated and severe malaria // Br. Med. Bull. 2005. P. 75–76.
- 13. Sharp K. W., Locicero R. J. Abdominal packing for surgically uncontrollable hemorrhage // Ann. Surg. 1992. Vol. 215(5). P. 467–475.