© Коллектив авторов, 2010 УДК 616.12-008.318-053.2:577.11

РОЛЬ АПОПТОЗА В ПАТОГЕНЕЗЕ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У ДЕТЕЙ С ДИЛАТАЦИОННОЙ КАРДИОМИОПАТИЕЙ

Т.В. Бершова, А.Г. Гасанов, М.И. Баканов, Е.Н.Басаргина, Н.Н. Мазанова Научный центр здоровья детей РАМН, Москва

Внастоящее время установлено важное значение апоптоза в регуляции деятельности сердечно-сосудистой системы [4]. Морфологические признаки апоптоза обнаружены в миокарде в условиях гипоксии, окислительного стресса и после перенесенного инфаркта [1]. Механизмы апоптоза, последовательность биохимических изменений при сердечной недостаточности до сих пор не до конца изучены, а литературные данные по этому вопросу весьма противоречивы [2,3].

Цель работы. Выявить взаимосвязь между сывороточным содержанием «сигнальных» биомаркеров апоптоза и функциональным состоянием параметров сердечно-сосудистой системы детей с ХСН и проанализировать роль апоптоза в патогенезе кардиодеструктивных процессов.

Материал и методы. Обследованы 90 пациентов в возрасте от 3 до 15 лет с хронической сердечной недостаточностью (ХСН), развившейся на фоне ДКМП. Клиническое обследование детей включало изучение анамнестических данных, объективный осмотр, проведение общеклинических и специальных лабораторноинструментальных исследований - ЭКГ, ЭхоКГ, холтеровского мониторирования ЭКГ, рентгенографии и компьютерной томографии органов грудной клетки. Результаты, полученные у детей с ХСН, сравнивали с данными 16 практически здоровых детей того же возраста. С помощью иммуноферментного анализа (ИФА) определяли содержание апоптозопосредуемых факторов: растворимого Fas-рецептора (Fas-R), растворимого Fas-лиганда (Fas-L), обеспечивающих передачу сигнала активации апоптоза на его начальных стадиях, содержание аннексина и цитохрома-С, играющих важную роль в инициации завершающей фазы каскада клеточной гибели. Измерение результатов ИФА проводили на микропланшетном ридере «Anthos-2020». Статистическую обработку полученных данных выполняли на персональном компьютере с использованием пакета программы «Statistica 6».

Результаты и обсуждение. У пациентов с ХСН в сыворотке периферической крови установлены изменения содержания указанных биомаркеров апоптоза в зависимости от клинического течения ХСН и морфофункциональных показателей сердца. Средний уровень маркеров клеточной гибели у обследуемых детей был выше и зависел от степени недостаточности кровообращения. Нарастание тяжести ХСН у детей с ДКМ характеризовалось снижением сократительной способности миокарда, увеличением кардиоторакального индекса (КТИ), размеров полостей сердца, повышением давления в легочной артерии.

Обнаружена достоверная прямая корреляционная связь КТИ с содержанием аннексина и размеров полостей левого желудочка с концентрацией Fas-L; установлена также обратная корреляционная зависимость фракции выброса от концентрации цитохрома-С. Анализ выявленных связей указывает на значимость апоптоза в развитии систолической дисфункции у детей с ДКМП.

Увеличение сывороточной концентрации Fas-R и Fas-L у больных с XCH определяет выраженность погибающих по программе Fas-зависимого апоптоза кардиомиоцитов и может быть вызвано усилением экспрессии некоторых противоспалительных цитокинов, обнаруженных у пациентов с XCH. Рилизинг таких апоптогенных факторов, как аннексин и цитохром-C, характеризует наличие метаболических изменений в митохондриях и нарушение их структуры у детей с XCH. При этом высвобождение цитохрома-С может быть следствием свободнорадикального окисления кардиолипина в митохондриях.

Заключение. Таким образом, в патогенез ХСН у детей с ДКМП вовлечены мембранный и митохондриальный звенья апоптоза, обусловленные аномалиями метаболизма, которые могут лежать в основе этого синдрома: формированием окислительного стресса, воспалением, повреждением митохондрий.

Литература

- Капелько, В.И. Эволюция концепций и метаболическая основа ишемической дисфункции миокарда / В.И. Капелько // Кардиология. -2005. - Т.45, №9. - С.78-90.
- Donohuel, A. Imaging apoptosis in myocardial infarction with 111In-labellet Annecin A5 / A. Donohuel, M. Sarail, S. Isobe [et al.] // J. of Nuclear Cardiology. – 2007. – Vol.14, Issea 2. – P. 61-63.
- 3. Hsu, D.T. Heart Failure in Children: History, Etiology, and Pathophysiology / D.T. Hsu, G.D. Pearson // Circ. Heart Fail. 2009. Vol.2. P. 63-70.
- Ricci, C. Involvement of the mitochondrial permeability transition pore in angiotensin II-mediated apoptosis / C. Ricci, V. Pastukh, S.W. Schaffer // Exper. and Clin. Cardiologjy. 2005. Vol.10, №3. P. 160-164.

Ключевые слова: сердечная недостаточность, апоптоз, сигнальные молекулы апоптоза

THE ROLE OF APOPTOSIS IN CHRONIC HEART FAILURE PATHOGENESIS IN CHILDREN WITH CARDIOMIOPATHY

BERSHOVA T.V., GASANOV A.G., BAKANOV M.I., BASARGINA E.N., MAZANOVA N.N.

Key words: heart failure, apoptosis, signal molecule of apoptosis

Бершова Татьяна Владимировна, доктор медицинских наук, старший научный сотрудник, ведущий научный сотрудник лаборатории клинической биохимии НЦЗД РАМН, тел.: 8 (499) 134-03-41.