А.М. Караськов, И.И. Демин, Р.М. Шарифулин, С.И. Железнев, А.В. Богачев-Прокофьев, А.Б. Опен, О.И. Кулумбегов

Различные типы кондуитов для реконструкции пути оттока из правого желудочка при процедуре Росса у взрослых: сравнительный анализ

ФГБУ «ННИИПК им. акад. Е.Н. Мешалкина» Минздрава России, 630055, Новосибирск, ул. Речкуновская, 15, journal@meshalkin.ru

УДК 616.126.52-089.844 BAK 14.01.26

Поступила в редакцию 5 апреля 2013 г.

© А.М. Караськов, И.И. Демин, Р.М. Шарифулин, С.И. Железнев, А.В. Богачев-Прокофьев, А.Б. Опен, О.И. Кулумбегов, 2013 Проведен сравнительный анализ использования различных типов кондуитов для восстановления пути оттока из правого желудочка (ВОПЖ) во время процедуры Росса у взрослых пациентов. С 1998 по 2012 г. выполнено 586 процедур Росса у взрослых пациентов. Для реконструкции ВОПЖ у 372 пациентов применялись различные эпоксиобработанные, у 88 глютаральдегидобработанные клапаносодержащие ксенокондуиты, в 125 случаях использовался легочный гомографт. Госпитальная летальность 4,9%. Средний срок наблюдения 43,2±16,9 мес. На момент выписки пиковый градиент на гомографте равнялся 8,1±3,7 мм рт. ст., на эпокси- и глютаральдегидобработанных ксеноперикардиальных кондуитах 11,4±4,7 и 14,9±6,1 мм рт. ст. Повторным операциям подверглось 28 пациентов. Трехлетняя свобода от реопераций для гомографтов составила 100%, для «КемПерипласНео» 99,2±0,7%, «БиоЛаб КБ/КЛ» 84,7±4,7%. По данным многофакторного анализа, тип имплантированного кондуита и возраст пациента были независимыми факторами риска развития дисфункции ксенографтов. Результаты исследования показывают, что легочный гомографт – наиболее предпочтительный кондуит для реконструкции ВОПЖ во время процедуры Росса. Альтернативным методом восстановления легочной артерии у пациентов старше 45 лет является использование эпоксиобработанных ксеноперикардиальных кондуитов. Ключевые слова: аортальный порок; процедура Росса; легочный гомографт; ксенокондуиты.

«Золотым стандартом» для реконструкции выходного отдела правого желудочка при процедуре Росса считается легочный гомографт [1, 2]. Однако в связи с ограниченной доступностью аллографтов предложены альтернативные методики восстановления пути оттока из правого желудочка с использованием различных видов ксенокондуитов [2–4]. В литературе представлено небольшое количество сообщений, посвященных применению ксенографтов при процедуре Росса. В настоящей статье проведен сравнительный анализ среднеотдаленных результатов использования различных типов кондуитов для реконструкции ВОПЖ во время процедуры Росса.

Материал и методы

С 1998 по 2012 г. в ННИИПК им. акад. E.H. Мешалкина выполнено 586 процедур Pocca у взрослых пациентов (≥16 лет). Средний возраст составил 45,5±14,2 лет. Общая характеристика больных отражена ниже. С целью коррекции аортального порока всем больным была выполнена процедура

Росса с использованием техники полного замещения корня аорты с реимплантацией устьев коронарных артерий в аутографт. Для реконструкции ВОПЖ у 372 пациентов применялись различные эпоксиобработанные, а у 88 глютаральдегидобработанные клапаносодержащие ксенокондуиты, в 125 случаях имплантировался легочный гомографт, в одном – клапаносодержащий графт из тетрафторэтилена. В последние годы нами наиболее часто используются два вида ксеноперикардиальных кондуитов: эпоксиобработанный «Пилон» и глютаральдегидобработанный «БиоЛаб КБ/КЛ». Средний диаметр кондуитов 26,9±1,3 мм. Время ИК 160,0±48,1 мин. Время окклюзии аорты 130,0±31,8 мин. Интраоперационные данные представлены далее.

Всем пациентам перед выпиской выполняли ультразвуковое исследование сердца с оценкой трансвальвулярного градиента на кондуите в позиции легочной артерии. В отдаленном периоде обследовано 70,4% пациентов. Средний срок наблюдения составил 43,2±16,9 мес.

Дооперационная характеристика пациентов	Кол-во, n (%)		
Пол			
мужской	426 (72,7)		
женский	160 (27,3)		
Этиология			
двустворчатый АоК	223 (38,1)		
хроническая ревматическая болезнь сердца	184 (31,4)		
инфекционный эндокардит	110 (18,7)		
дегенеративный порок	54 (9,2)		
дисфункция протеза	14 (2,4)		
миксома	1 (0,17)		
Гемодинамический вариант			
стеноз	266 (45,4)		
недостаточность	241 (41,1)		
комбинированный порок	66 (11,3)		
Предшествующие операции			
протезирование АоК	13 (2,22)		
процедура Бенталла	1 (0,17)		
пластика створок АоК	3 (0,51)		
аортальная комиссуротомия	5 (0,85)		
баллонная вальвулодилатация АоК	2 (0,34)		
резекция подклапанной мембраны	2 (0,34)		
резекция коарктации аорты	7 (1,2)		
лигирование открытого артериального протока	5 (0,85)		
ЧТКА	6 (1,05)		
Сердечная недостаточность (по NYHA), ФК			
I .	14 (2,4)		
II	167 (28,5)		
III	388 (66,2)		
IV	17 (2,9)		
ФВ ЛЖ, %			
≥50	528 (90,1)		
36–49	40 (6,8)		
≤35	18 (3,1)		

Показаниями для репротезирования легочной артерии считали: пиковый градиент правый желудочек/ легочная артерия ≥50 мм рт. ст., выраженную недостаточность на кондуите, правожелудочковую недостаточность, рефрактерную к медикаментозной терапии, выраженную трикуспидальную недостаточность.

При наличии показаний к повторной операции выполняли МСКТ-ангиографию сердца для уточнения локализации и характера дисфункции кондуита, определения и количественной оценки кальциноза графта и коронарных артерий (Calcium Score).

По данным ЭхоКГ была проанализирована динамика градиентов на различных видах кондуитов. С помощью статистических методов проведен анализ актуарных свобод от реопераций. Так как для различных графтов сроки наблюдения различались, сравнены показатели через 36 мес. после операции. Статистическая обработка полученных результатов осуществлялась с помощью пакета

Интраоперационные данные	Кол-во, n (%)
Графты для реконструкции ВОПЖ	
«Пилон»	274 (47,1)
Легочный гомографт	125 (21,3)
«АБ-композит»	75 (12,8)
«БиоЛаб КБ/КЛ»	73 (12,45)
«АБкомпозитHeo»	9 (1,5)
«АБ-моно»	14 (2,4)
«БиоЛаб КК/ЛС»	7 (1,2)
«БиоЛаб КК/AC»	4 (0,7)
«БиоЛаб КС/ПТ»	1 (0,17)
«БиоЛаб ПП/МК»	2 (0,34)
Сопутствующие вмешательства	
аортокоронарное шунтирование	30 (5,1)
ЧТКА	2 (0,34)
пластика митрального клапана	51 (8,7)
пластика трикуспидального клапана	30 (5,1)
радиочастотная фрагментация предсердий	11 (1,87)
закрытие ДМЖП	9 (1,5)
лигирование ОАП	2 (0,34)
редукционная аортопластика по Robicsek	19 (3,24)
протезирование восходящей аорты	5 (0,85)

программы «Statistica 6.0». Результаты представлены как среднее и стандартное отклонение (М±σ). Для анализа данных использовали параметрические методы. Для сравнения двух групп применяли t-критерий Стьюдента. Актуарная свобода от повторных операций рассчитывалась по методике Каплана – Майера. Для корреляционного анализа использовался коэффициент Спирмена. Многофакторный анализ проводился с помощью методики логистической регрессии. Статистически значимыми считались различия данных при p<0,05.

Результаты

Общая госпитальная летальность составила 4,9%. С накоплением опыта и совершенствованием технологии летальность в последние годы не превышает 2,9%. При оценке функции кондуитов в позиции легочной артерии наименьший систолический градиент на момент выписки был получен при использовании легочного гомографта — 8,1±3,7 мм рт. ст. При использовании ксенокондуитов минимальный градиент наблюдался на эпоксиобработанном ксеноперикардиальном кондуите «Пилон» — 11,4±4,7 мм рт. ст.; максимальный — при имплантации первых моделей эпокси- и глютаральдегидобработанных ксенокондуитов («АБ-Моно», «АБ-композит», «БиоЛаб КК/ЛС», «БиоЛаб КК/АС») (таблица).

В отдаленном периоде известно о девяти летальных исходах, информация о которых получена в ходе переписки с родственниками. В одном случае причиной смерти стал ишемический инсульт через три месяца после операции, в остальных причина не известна. При оценке градиентов на ВОПЖ в динамике отмечено, что уже через год на всех

Динамика градиентов на различных кондуитах, p<0,05 по сравнению с показателями:

•	۳,			,			
**	в	гр	ynne	2 SON	102	рафі	тов

Кондуит	Кол-во имплант. графтов	Кол-во реопераций (% от имплантирован.)	Наблюдение, мес.	Пиковый градиент, мм рт. ст.			
				при вы- писке	12 мес.	36 мес.	60 мес.
Гомографт	125	1 (0,8)	25,7±10,2	8,1±3,7	11,98± 7,2*	12,5±4,9*	-
Пилон	274	1 (0,36)	34,8±15,7	11,4±4,7**	13,81±7,5*	16,9±8,9*	_
БиоЛаб КБ/КЛ	73	11 (15,1)	36,3±19,9	14,9±6,1**	30,04±26,4*	34,7±28,6*	_
АБ-Моно	14	2 (14,3)	49,6±37,3	21,9±10,3**	31±5,6*	40,2±10,1*	61,5±30,4
АБ-Композит/ Композит Нео	84	9 (10,7)	55,8±33,4	17,9±7,4**	21,06±9,6*	28,35±14,0*	38,6±16,8
БиоЛаб КК/ ЛС/КК/АС	11	4 (36,4)	63,6±36,8	24,4±14,6**	36,29±23,3*	43,7±37,0*	-

кондуитах наблюдалось статистически значимое увеличение пикового градиента. Однако в группе гомографтов и ксенокондуитов «Пилон» прирост градиента был наименьшим. Наиболее быстрые изменения наблюдались на глютаральдегидобработанных кондуитах как предыдущих, так и современных моделей (таблица).

Повторным операциям на ВОПЖ подверглось 28 пациентов. В 25 случаях показанием для репротезирования легочной артерии был выраженный стеноз графта. В остальных случаях наблюдались умеренные гемодинамические нарушения на уровне створок графта, а основной причиной для вмешательства послужили выраженная аортальная (два пациента) и митральная (один пациент) недостаточность. Градиент систолического давления ПЖ/ЛА, по данным ЭхоКГ, на момент операции составил 67,5±29 мм рт. ст. У шести пациентов имела место правожелудочковая недостаточность, резистентная к проводимой медикаментозной терапии, у трех из них наблюдалось снижение ФВ правого желудочка менее 40%. В девяти случаях диагностирована умеренная/выраженная трикуспидальная недостаточность. Средний срок повторной операции равнялся 49,9±30,1 мес. Общая актуарная свобода от замены кондуита через 12, 36 и 60 мес. составила 99,4±0,4; 95,8±1,1 и 88,9±3,3% соответственно. Были заменены следующие кондуиты: «БиоЛаб КБ/КЛ» – 11 шт., «АБ-композит» – 9, «БиолЛаб KK/ЛC» – 4, «АБ-моно» – 2, гомографт – 1 и «Пилон» – 1.

При сравнении современных кондуитов наибольшую актуарную свободу от повторных вмешательств показали легочный гомографт и эпоксиобработанный ксенографт «Пилон». Трехлетняя свобода для глютаральдегидобработанного кондуита «БиоЛаб КБ/КЛ» статистически значимо им уступала и составляла 84,7±4,7% (рис. 1).

Данные диагностики, подтвержденные интраоперационными находками, выявили, что у восьми пациентов стеноз локализовался на уровне створок графта, у четырех — на уровне проксимального анастомоза и ВОПЖ, в стольких же случаях — на уровне дистального анастомоза, в двенадцати имела место многоуровневая деформация просвета кондуита. При этом отмечено, что в случае

эпоксиобработанных протезов патологические изменения наблюдались преимущественно на уровне створок и приточного отдела, тогда как для глютаральдегидобработанных частыми были изменения на уровне дистального анастомоза. Признаки перенесенного протезного эндокардита отмечены у трех пациентов.

В 50% случаях репротезирование легочной артерии проводили на работающем сердце в условиях параллельного искусственного кровообращения. Наиболее часто во время повторной операции имплантировали легочный гомографт (14 пациентам) и ксенокондуит «Пилон» (12 пациентам), реже использовали «БиоЛаб Кб/КЛ» (два пациента). В четырех случаях одномоментно выполнено репротезирование аортального клапана механическим протезом, в двух шовная пластика синотубулярного соединения аутографта и в одном супракоронарное протезирование восходящего отдела аорты. Пяти пациентам вмешательство на ВОПЖ было дополнено коррекцией трикуспидальной недостаточности, двум – митрального порока (пластика с использованием опорных колец).

Летальность при повторных операциях составила 7,7% (2 пациента). Причиной смерти в обоих случаях было массивное интраоперационное кровотечение. Остальные пациенты выписаны с хорошим гемодинамическим эффектом коррекции. Пиковый систолический градиент ПЖ/ЛА на момент выписки составил 13,5±5,6 мм рт. ст., во всех случаях наблюдалась нормализация функции правого желудочка, трикуспидальная регургитация не превышала I степень. Трем пациентам в связи с развитием дистального рестеноза кондуита выполнялись ангиопластики с хорошим ангиографическим результатом.

При проведении корреляционного анализа выявлено, что с частотой возникновения дисфункции ксенокондуитов в позиции ВОПЖ (пиковый градиент ≥40 мм рт. ст., легочная регургитация ≥ умеренной) связаны следующие факторы: возраст на момент операции, мужской пол, инфекционный эндокардит в послеоперационном периоде, тип имплантированного кондуита. При многофакторном анализе установлено, что лишь тип имплантированного ксенокондуита (р = 0,01) и возраст пациента менее 45 лет

Рис. 1.Актуарная свобода от реопераций для различных кондуитов.

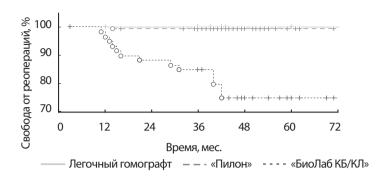
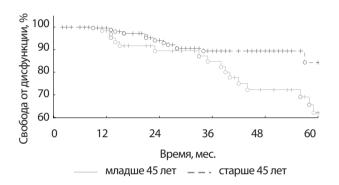



Рис. 2.
Актуарная свобода от дисфункции ксенографтов в зависимости от возраста.

(p = 0,0009) являлись независимыми предикторами развития дисфункции и повторной операции (рис. 1 и 2).

Обсуждение

Процедура Росса подразумевает реконструкцию ВОПЖ. В настоящее время использование легочного гомографта во время процедуры Росса является «золотым стандартом». Во многих исследованиях были показаны хорошие непосредственные и отдаленные результаты применения легочного аллографта. Так, по данным Немецко-голландского регистра, свобода от повторных операций составила через 5 лет 97%, через 12 лет 93%, а риск реоперации равнялся 0,3%/пациент-год [5]. Аналогичные результаты получены в мета-анализе [6]. По данным Elkins [1], David [7], 10–13-летняя свобода от репротезирования гомографта составляет 86–90%. Факторами риска развития дисфункции гомографта являются молодой возраст пациента и донора, продолжительность криопресервации [1, 8].

В нашем исследовании срок наблюдения для легочных гомографтов был наименьшим среди всех исследуемых кондуитов. Это объясняется тем, что использование криосохраненных аллографтов в нашей клинике началось лишь в 2008 г. после внедрения технологии криопресервации. Однако полученные нами непосредственные и среднеотдаленные результаты подтверждают, что гомографты в позиции ВОПЖ демонстрируют наилучшие гемодинамические показатели.

Но, хотя преимущества легочных гомографтов в сравнении с другими кондуитами не вызывают сомнения, существует

серьезный их недостаток – ограниченная доступность во многих странах, в том числе и в России. В Европе проблема дефицита гомографтов решена, так как с 1989 г. успешно функционирует Европейский банк гомографтов (ЕНВ). Сохраняющийся дефицит гомографтов послужил причиной разработки и внедрения для реконструкции ВОПЖ альтернативных кондуитов с использованием ксеноткани.

М. Homann и др. в 2000 г., основываясь на 25-летнем опыте, провели сравнительный анализ применения гомографтов и ксенокондуита Hancock для реконструкции ВОПЖ в педиатрической группе [9]. Авторы делают вывод, что гомографты значительно превосходят ксенокондуиты по свободе от повторных операций.

В 1996 г. впервые был применен ксенокондуит Medtronic Freestyle для реконструкции ВОПЖ при процедуре Росса [10]. В последующем продемонстрированы хорошие ранние и среднеотдаленные результаты использования этого кондуита во время процедуры Росса. Авторы приходят к заключению, что Medtronic Freestyle может стать альтернативой легочному гомографту в случае, если последний недоступен [2–4].

Существуют и менее оптимистичные результаты использования ксенокондуита Medtronic Freestyle для восстановления пути оттока из правого желудочка. По данным А. Miskovic и др. [11], через шесть лет в группе пациентов с ксенокондуитами дисфункция наблюдалась в 10 раз чаще, чем в группе гомографтов. Основная причина повторных операций – стенозирование на уровне проксимального анастомоза.

Т. Weimar и его сотрудники, основываясь на опыте лечения 33 пациентов, установили, что ксенографты демонстрируют более высокие градиенты и связаны с более высоким риском повторной операции [12]. Через 12 мес. средний градиент на ВОПЖ составил 23 мм рт. ст., 12% пациентов нуждались в реоперациях.

В педиатрической группе широко применяется ксенокондуит Contegra. Имеются сообщения о хороших среднеотдаленных результатах применения этого графта для реконструкция ВОПЖ во время процедуры Росса у взрослых пациентов. Так, L. Niclauss и его коллеги сообщают от 32 взрослых пациентах, которым легочная артерия была замещена кондуитом Contegra 22 мм [13]. Свобода от реоперации через 9 лет составила 91%; средний градиент через 38 мес. – 14,1 мм рт. ст. Авторы считают, что этот кондуит может стать альтернативой гомографту.

Таким образом, сообщения об использовании ксенокондуитов при процедуре Росса единичны, основаны на небольшом количестве наблюдений и весьма противоречивы. В нашем исследовании представлен опыт 460 процедур Росса с использованием ксенокондуитов отечественного производства.

Ранние модели ксенографтов («АБ-Моно», «АБ-Композит», «БиоЛаб КК/КС», «БиоЛаб КК/КС») демонстрировали высокие градиенты уже при выписке, с дальнейшим быстрым нарастанием в динамике. Это можно объяснить особенностью конструкции этих протезов, содержавших в своем составе ксеноаортальные створки, эластические элементы которых быстро подвергались дегенерации. В настоящее время эти ксенокондуиты не используются.

При сравнении современных эпоксиобработанного («Пилон») и глютаральдегидобработанного («БиоЛаб КБ/КЛ») ксеноперикардиальных клапаносодержащих кондуитов выявлено, что первый на момент выписки демонстрирует более низкие градиенты, близкие к таковым на гомографте. При динамическом наблюдении на эпоксиобработанном графте градиенты также были статистически значимо меньше. Полученные данные подтверждают ранее опубликованные нами результаты [14–16]. Через 36 мес. свобода от повторных операций при использовании «Пилона» была значимо ниже: 99,2±0,7 против 84,7±4,7%.

Наше исследование ограничено малым сроком отдаленного наблюдения. Несмотря на это, полученные непосредственные и среднеотдаленные результаты позволяют сделать заключение, что альтернативным методом восстановления легочной артерии у пациентов старше 45 лет при отсутствии легочного гомографта является использование ксеноперикардиальных кондуитов. Среди ксенографтов оптимальные гемодинамические характеристики и наибольшую свободу от дисфункции в среднеотдаленные сроки после операции демонстрируют диэпоксиобработанные ксеноперикардиальные кондуиты.

Список литературы

- Elkins R.C., Thompson D.M. et al. //Thorac. Cardiovasc. Surg. 2008.
 V. 136. P. 623–630.
- Schmid F.X., Keyser A. et al. // Ann. Thorac. Surg. 2002. V. 74 (3). P. 684–688.
- Boethig D., Westhoff-Bleck M. et al. //Thorac. Cardiovasc. Surg. 2009. V. 57 (4). P. 196–201.
- Hechadi J., Gerber B.L., Coche E. et al. // Eur. J. Cardiothorac. Surg. 2013. doi:10.1093/eicts/ezt147. P. 1–8.
- Charitos E.I., Takkenberg J.J. et al. // Thorac. Cardiovasc. Surg. 2012.
 V. 144 (4). P. 813–823.
- Johanna J.M., Takkenberg J.J. et al. // Circulation. 2009. V. 119. P. 222–228.
- David T.E., Woo A., Armstrong S. et al. // Thorac. Cardiovasc. Surg. 2010. V. 139. P. 68–75.
- Raanani E., Yau T.M., David T.E. et al. // Ann. Thorac. Surg. 2000.
 V. 70. P. 1953–1957.
- Homann M., Haehnel J.C. et al. // Eur. J. Cardiothorac. Surg. 2000.
 V. 17. P. 624–630.
- Konertz W., Sidiropoulos A. et al. // Heart Valve Dis. 1996. V. 5. P. 418–420.
- Miskovic A., Monsefi N. et al. // Eur. J. Cardiothorac. Surg. 2012.
 V. 42 (6). P. 927–933.
- Weimar T., Roser D., Liebrich M. et al. // Biotechnol. J. 2013. V. 8 (3).
 P. 345–351
- Niclauss L., Delay D. et al. // Inter. Cardiovasc. Thorac. Surg. 2009.
 V. (4). P. 667–671.
- 14. Караськов А.М., Железнев С.И., Литасова Е.Е. и др. // Патология кровообращения и кардиохирургия. 2009. № 4. С. 9–14.
- 15. Караськов А.М., Демин И.И., Железнев С.И. и др. // Кардиология и сердечно-сосудистая хирургия. 2010. № 3. С. 64–67.
- 16. Караськов А.М., Железнев С.И., Богачев-Прокофьев А.В. и др. // Патология кровообращения и кардиохирургия. 2013. № 1. С 5–9