распределения РФП в тканях гортани в аксиальной, фронтальных и сагиттальных плоскостях. Для получения совмещенных изображений использовались одинаково расположенные срезы СКТ и ОЭКТ. Для соответствия элементов изображения СКТ и ОЭКТ при их наложении друг на друга и получения совмещенного изображения, вручную выделялся наружный контур гортани на изображения СКТ и внутренняя граница области нормального накопления ^{99m}Тс-Технетрила в мягких тканях на ОЭКТ. В окончательное изображение совмещенного скана для облегчения его визуального анализа данные СКТ включались в виде кодирования в градациях серого, а данные ОЭКТ – в цветовой кодировке. Совмещенные, анатомически сопоставимые изображения особенно полезны в оценке эффекта проведенной лучевой или химиолучевой терапии, наиболее трудном разделе клинической онкологии.

Результаты. При анализе полученных данных отмечено, что при локализации опухоли в надсвязочном пространстве характерными компьютерно-томографическими признаками являлись отсутствие или деформация грушевидных синусов, в проекции которых определялось

образование. При наличии образования в проекции складочного отдела визуализировалась деформация и утолщение складок, их асимметрия. В 64 % случаев поражение складок было односторонним, приводящими к сужению просвета гортани. Реже злокачественный процесс локализовался в подскладочном отделе, когда определялось наличие дополнительного образования ниже складок гортани. Поражение двух и трех отделов гортани с переходом на переднюю комиссуру было выявлено почти у половины больных. На сцинтиграммах накопление ^{99m}Tc-Технетрила в гортани, как правило, было близко по расположению с локализацией накопления при СКТ с динамическим контрастированием. Но более достоверное заключение о локализации опухолевого образования получали лишь при совмещении обоих методов.

Выводы. Чувствительность и специфичность ОЭКТ гортани, выполненной с ^{99m}Тс-Технетрилом, в диагностике рецидивов рака гортани превосходили данные СКТ с контрастным усилением. Представляется целесообразным использование методов совмещения в диагностике первично выявленных опухолей гортани и рецидивирующих опухолей.

ПРИМЕНЕНИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ ДЛЯ ПЛАНИРОВАНИЯ ПЕРВИЧНОЙ ПЛАСТИКИ ПОСЛЕОПЕРАЦИОННЫХ ДЕФЕКТОВ ЧЕРЕПА У ОНКОЛОГИЧЕСКИХ БОЛЬНЫХ

В.А. СЫРКАШЕВ, В.А. НОВИКОВ, А.И. РЯБОВА, И.Г. ФРОЛОВА, П.В. СУРКОВА

НИИ онкологии СО РАМН. г. Томск

Актуальность. Опухоли головы и шеи, врастающие в полость черепа, составляют около 1 % всех злокачественных новообразований. Тактика лечения зависит от гистологической природы и распространенности новообразования. Оперативное вмешательство является основным методом лечения доброкачественных опухолей этой локализации и основным элементом комбинированной терапии большинства злокачественных опухолей. Эффективное хирургическое лечение подразумевает широкое

иссечение опухолевого узла, прилежащих мягких тканей и костных структур черепа. Анатомические особенности строения черепа и близость жизненно-важных структур требуют адекватной реконструкции послеоперационных дефектов свода и основания черепа. Восстановление барьера между полостью черепа и внечерепным пространством предотвращает возникновение грубых косметических дефектов, а также ликвореи, гнойно-септических осложнений, менинго- и энцефалоцеле, сосудистых,

неврологических и ликвородинамических расстройств. В НИИ онкологии СО РАМН разработан метод пластики дефектов основания и свода черепа у онкологических больных конструкциями из пористого никелида титана. Особенности структуры материала позволяют моделировать из пористых пластин прочные объемные тонкостенные имплантаты, по форме соответствующие восполняемым дефектам, обеспечивают жесткую биологическую фиксацию и восстановление барьера между полостью черепа и внечерепным пространством.

Материал и методы. С 2002 по 2010 г. В НИИ онкологии СО РАМН прооперировано 30 пациентов с опухолями, врастающими в полость черепа. Выполнена 31 операция с резекцией и одномоментным восстановлением дефектов костей свода и/или основания черепа с использованием индивидуальных имплантатов из никелида титана. До операции больным выполнялась спиральная компьютерная томография на мультиспиральном томографе «Somatom sensation-4» с толщиной срезов 1-1,5 мм, с последующей 3D-реконструкцией с внутривенным контрастированием. На основании данных мультиспиральной компьютерной томографии (МСКТ) выполнялась стереолитографическая модель черепа, которая использовалась в качестве шаблона при изготовлении индивидуального имплантата из никелида титана. МСКТ головного мозга и придаточных пазух носа (при необходимости) выполнялась через 2 нед, 3, 6 и 12 мес после операции для контроля за состоянием опухоли и положением эндопротеза.

Результаты. Длительность наблюдения за больными составила от 1 до 8 лет. У всех больных отмечена стабильная фиксация имплантата, прорастание его окружающими тканями, отсутствовали осложнения в виде смешения имплантата, нагноения, достигнут удовлетворительный косметический результат. Использование МСКТ в планировании оперативного вмешательства позволяет оценить локализацию и распространенность опухолевого процесса, расположение зон деструкции кости и гиперостоза и, таким образом, прогнозировать размеры и конфигурацию послеоперационного дефекта черепа, что позволяет уже на дооперационном этапе изготовить имплантат, соответствующий индивидуальным анатомическим особенностям строения черепа больного. Динамическое МСКТ-исследование в послеоперационном периоде способствует адекватной оценке положения имплантата, взаимодействия его с окружающими тканями, своевременному выявлению рецидива опухоли.

ВОЗМОЖНОСТИ КОМПЬЮТЕРНО-ТОМОГРАФИЧЕСКОГО ИССЛЕДОВАНИЯ В ПРЕДЛУЧЕВОЙ ПОДГОТОВКЕ БОЛЬНЫХ РАКОМ ПРЯМОЙ КИШКИ

А.С. ТАРАСОВА, С.Г. АФАНАСЬЕВ, Е.Н. САМЦОВ, А.В. МИНАКОВА, Ж.А. СТАРЦЕВА

НИИ онкологии СО РАМН, г. Томск

Актуальность. Одним из наиболее обоснованных вариантов комбинированного лечения местнораспространенного рака прямой кишки (МРРПК) является предоперационная лучевая терапия в сочетании с радиомодификацией. Выбор программы лучевой терапии проводится индивидуально для каждого больного в зависимости от особенностей распространения опухолевого процесса в стенке кишки, заинтересованности и расположения органов малого таза. Применение современных компьютерных технологий в луче-

вой терапии изменили стратегию предлучевой подготовки. Внедрение трехмерного дозиметрического компьютерного планирования позволяет повысить точность расчета дозы на основе объемной информации о мишени и органах риска.

Цель исследования: провести клиническую апробацию метода предоперационной химиолучевой терапии с использованием курса сочетанной ЛТ и капецитабина в качестве радиосенсибилизатора, используя СКТ для предлучевой подготовки.