

УДК: 616. 833-002:616. 28-008. 14

ПРИМЕНЕНИЕ ДИНАМИЧЕСКОЙ КОРРЕКЦИИ АКТИВНОСТИ СИМПАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ В ЛЕЧЕНИИ СЕНСОНЕВРАЛЬНОЙ ТУГОУХОСТИ

Х. Т. Абдулкеримов, К. И. Карташова, Ж. А. Рамазанова

ГОУ ВПО Уральская государственная медицинская академия, г. Екатеринбург (Зав. каф. оториноларингологии – проф. Х. Т. Абдулкеримов)

Поскольку слух является одной из важнейших функций организма, обеспечивающих развитие человека и его коммуникативную адаптацию в обществе, на современном этапе развития тугоухость и глухота являются предметом не толь-ко клинической, но и социальной медицины.

Количество больных с сенсоневральной тугоухостью в России превышает более 13 млн. человек. Согласно прогнозам ВОЗ к 2020 году ожидается увеличение численности населения с социально значимыми дефектами слуха более чем на 30%. У 14% людей на Земле в возрасте от 35 до 65 лет и у 30% людей старше 65 лет имеются нарушения слуха.

Следует напомнить, что адекватный уровень функционирования организма в целом и слухового анализатора в частности определяется системой функциональных резервов, одним из информационных индикаторов которых являются характеристики системы кровообращения, а ведущая роль в организации адаптационно-приспособительной деятельности человека принадлежит вегетативной нервной системе (ВНС). [1]

Развитие методов диагностики состояния ВНС и коррекции ее параметров является актуальной задачей современной медицины. В последние годы при лечении различной ЛОР-патологии все больше внимания уделяется использованию физических факторов и их воздействию на различные системы организма. [2, 5]

Целью работы явилось изучение возможностей лечения сенсоневральной тугоухости путем динамической коррекции активности симпатической нервной системы (ДКАСНС).

Материалы и методы

Для лечения сенсоневральной тугоухости нами предложен способ динамической коррекции активности симпатической нервной системы (ДКАСНС), который позволяет активизировать отдельные механизмы регуляции, участвующие в организации кровоснабжения органов и тканей, в частности внутреннего уха [3, 4, 6]. При обеспечении ДКАСНС в качестве управляемого механизма выбран нейрогенный механизм, функции которого выполняет симпатический отдел ВНС, мишенью воздействия является звездчатый ганглий симпатической нервной системы, а так же сосцевидные отростки. Клинический эффект достигается за счет улучшения микроциркуляции и транскапиллярного обмена в структуре внутреннего уха.

Процедура ДКАСНС выполняется с помощью аппарата, в котором для чрескожного воздействия на эти точки формируется пространственно-распределенное вращающееся поле электрических импульсов тока [7].

Сущность предполагаемого воздействия заключается в том, что в известном электрофизизическом способе лечения сенсоневральной тугоухости путем дозированного воздействия электрическим импульсным током с целью повышения эффективности лечебного процесса, до лечения производят комплексное аудиометрическое обследование: пороговую и надпороговую тональную аудиометрию, тимпанометрию, регистрацию слуховых вызванных потенциалов, исследование состояния вегетативной нервной системы проводят путем регистрации вариабельности сердечного ритма (ВСР) с помощью кардиоинтервалографии.

После этого производят многократное чрескожное воздействие на шейные ганглии симпатической нервной системы и сосцевидные отростки: при симпатикотонии и гиперсимпатикотонии параметры поля должны обеспечивать блокирование активности симпатической нервной системы, а при ваготонии, гиперваготонии, нормотонии — ее стимуляцию.

Техническим результатом метода является то, что выбор биотропных параметров вращающегося поля электрических импульсов тока осуществляют в соответствии с результатами анализа кардиоинтервалографии, что позволяет применять данный электрофизический способ лечения сенсоневральной тугоухости в случае ваготонии без дополнительного медикаментозного лечения, а также для воздействия не только на шейные ганглии симпатической нервной системы, но и (или) на сосцевидные отростки.

Методика лечения состоит из нескольких циклов: 1 цикл – воздействие в проекции звездчатого ганглия симпатической нервной системы одной стороны и сосцевидного отростка другой стороны; 2 цикл — функциональный покой; 3 цикл — воздействие в проекции звездчатого ганглия противоположной ветви симпатической нервной системы и сосцевидного отростка другой стороны; 4 цикл — функциональный покой. Время каждого воздействия и функционального покоя — 5 минут, количество процедур в лечебном курсе от 3 до 5.

По описанной выше методике нами проведено электрофизическое лечение 98 пациентов в возрасте от 25 до 55 лет, страдающих хронической формой нейросенсорной тугоухости.

Приведем примеры лечения хронической формы нейросенсорной тугоухости предлагаемым электрофизическим способом.

Пример №1. Пациент Г. 46 лет. Обратился с жалобами на снижение слуха на правое ухо, звон в правом ухе, ощущение заложенности правого уха по вечерам. Неоднократно проводившееся медикаментозное лечение (ноотропные, сосудистые препараты) оказалось неэффективным.

Клинический диагноз: Правосторонняя хроническая сенсоневральная тугоухость.

При лечении пациента Г. осуществляли воздействие на шейные ганглии СНС. В соответствии с результатами анализа ВСР при лечении применяли режим стимуляции СНС. Проведено 5 процедур.

Данные аудиометрического исследования слуховой функции до и после применения лечебного аппарата

Таблица 1

Аудиологическое исследование	Порог слышимости, дБ		Процент потери слуха, %	
	До лечения	После лечения	До лечения	После лечения
	75-80	55	75	55

Заключение: Аудиологическая характеристика соответствует правосторонней сенсоневральной тугоухости 3–4 степени. Процент потери слуха справа 75%.

Слышимость разговорной речи справа составляет 0,5м, слева более 6,0 метров, шепотной речи справа — у раковины, слева — 6,0 метров. После проведенной терапии аудиологическая картина соответствует правосторонней сенсоневральной тугоухости 2—3 степени. Процент потери слуха справа 55%, так же наблюдается увеличение слышимости разговорной речи на 2,0 м справа и увеличение слышимости шепотной речи на 0,5 м справа.

Таблица 2 Данные тональной надпороговой аудиометрии

Тесты надпороговой аудиометрии	До лечения	После лечения
Si-si, %	100	90
Люшера, дБ	0,4	0,4
Кархарта, дБ	20	20
Пороги дискомфорта, дБ	100-110	100-110
Тональность шума, дБ	60	Шума нет

до и после применения лечебного аппарата

Заключение: Правосторонняя сенсоневральная тугоухость. Внутриулитковое поражение, феномен усиления нарастания громкости (ФУНГ) — положительный, после проведенной терапии наблюдается исчезновение узкополосного шума.

По данным спектрального анализа BCP LF/HF=1,1, что соответствует пограничному состоянию между нормотонией и ваготонией. Здесь и далее HF — мощность высокочастотной части спектра в диапазоне частот от 0,4 до 0,15 Гц (мощность в этом диапазоне, в основном, связана с дыхательными движениями и отражает модулирующее влияние на сердечный ритм со стороны парасимпатического отдела BHC); LF — мощность низкочастотной части спектра в диапазоне частот от 0,15 до 0,04 Гц (на мощность в этом диапазоне оказывают влияния изменения тонуса преимущественно симпатического отдела BHC).

Общее заключение:

- 1. У пациента Г. наблюдается улучшение общего самочувствия, улучшение разборчивости речи, исчезновение шума в правом ухе, улучшение слышимости разговорной речи на 2,0 м. справа и увеличение слышимости шепотной речи на 0,5 м справа.
- 2. Процент потери слуха справа уменьшился и составил 55%, вместо 75% до лечения.
- 3. По данным надпороговой аудиометрии наблюдается исчезновение узкополосного шума справа.
- 4. По данным слуховых вызванных потенциалов после проведенной терапии наблюдается улучшение проводимости на всем протяжении кохлеарного нерва справа от кохлеарного ядра до латеральной петли и медиального коленчатого тела.

Таким образом, в результате лечения у пациента Γ . произошло частичное улучшение функции нейросенсорных структур слухового анализатора справа.

Пример №2. Пациент К. 36 лет.

Клинический диагноз: Двусторонняя хроническая нейросенсорная тугоухость.

Обратился с жалобами на снижение слуха на оба уха, звон в левом ухе, снижение слуха отмечает в течение 7-10 лет.

При лечении пациента К. осуществляли воздействие на шейные ганглии СНС. В соответствии с результатами анализа ВСР при лечении применяли режим стимуляции СНС. Проведено 5 процедур.

Таблица 3 Данные аудиометрического исследования слуховой функции до и после применения лечебного аппарата

A	Порог слышимости, дБ		Процент потери слуха, %	
Аудиологическое	До лечения	После лечения	До лечения	После лечения
исследование	50-55	30-35	52	31,25

Аудиологическая характеристика соответствует двухсторонней сенсоневральной тугоу-хости 2 степени. Процент потери слуха справа 52% Слышимость разговорной речи справа составляет 6,0м., слева 5 м, слышимость шепотной речи справа — 3,5 м., слева — 3,5 м. После проведенной терапии показатели аудиограммы соответствует двухсторонней нейросенсорной тугоухости 2 степени. Процент потери слуха слева 31,25%, наблюдается увеличение слышимости шепотной речи на 1 м. справа и на 1 м. слева, слышимость разговорной речи не изменилась.

 Таблица 4

 Данные тональной надпороговой аудиометрии

 до и после применения лечебного аппарата

Тесты надпороговой аудиометрии	До лечения	После лечения
Si-si, %	15	15
Люшера, дБ	0,6	0,6
Кархарта, дБ	10	10
Пороги дискомфорта, дБ	65-85	65-85
Тональность шума, дБ	30	Шума нет

Заключение: Правосторонняя сенсоневральная тугоухость. Внутриулитковое поражение, феномен усиления нарастания громкости (ФУНГ) — положительный, после проведенной терапии наблюдается исчезновение узкополосного шума.

По данным спектрального анализа BCP LF/HF=10,2, что соответствует выраженному состоянию симпатикотонии.

Общее заключение:

- 1. У пациента К. наблюдается улучшение общего самочувствия, улучшение разборчивости речи, исчезновение шума в левом ухе, улучшение слышимости шепотной речи на 1м справа и на 1м слева, слышимость разговорной речи не изменилась.
- 2. Процент потери слуха слева уменьшился до 31,25%, вместо 52% до лечения.
- 3. По данным надпороговой аудиометрии наблюдается исчезновение узкополосного шума слева.
- 4. По данным слуховых вызванных потенциалов после проведенной терапии наблюдается положительная динамика улучшение проводимости на всем протяжении кохлеарного нерва от кохлеарного ядра до латеральной петли и медиального коленчатого тела.

Таким образом, в результате лечения у пациента К. произошло частичное улучшение функции сенсоневральных структур слухового анализатора.

Таким образом, приведенные выше результаты клинической апробации предлагаемого электрофизического способа лечения нейросенсорной тугоухости свидетельствуют об объективном комплексном улучшении слуховой функции.

Выводы:

- 1. Динамическая коррекция активности симпатической нервной системы(ДКАСНС) позволяет повысить клинический результат терапии больных с сенсоневральной тугоухостью.
- 2. ДКАСНС может применяться, в качестве терапии при сочетанной патологии вегетативной нервной системы и наличии сенсоневральной тугоухости.
- 3. В ряде случаев, когда медикаментозная терапия противопоказана, ДКАСНС может назначаться как монотерапия больным с сенсоневральной тугоухостью.
- 4. Способ электрофизического лечения сенсоневральной тугоухости является не инвазивным и обеспечивает эффективное восстановление функции вегетативной нервной системы и нейросенсорных структур слухового анализатора, без каких-либо осложнений.

ЛИТЕРАТУРА

- 1. Вейн А. М. Вегетативные расстройства: клиника, диагностика, лечение. / А. М. Вейн, Т. Г. Вознесенская. М.: Медицинское информационное агентство, 2000. С. 44–63.
- 2. Кубланов В. С. Электрофизический способ коррекции нарушений системы регуляции кровоснабжения головного мозга. / В. С. Кубланов. //Биомедицинская радиоэлектроника, 1999. №4. С. 12–15.
- 3. Кубланов В. С. О некоторых возможностях электрофизического метода коррекции активности симпатической нервной системы. / В. С. Кубланов. //Физиотерапевт. 2007. №8. С. 39–43.
- 4. Лаврова С. А. Лечение эпилепсии с применением пространственно распределенных вращающихся полей импульсов тока. / С. А. Лаврова, В. С. Кубланов, А. С. Шершевер. // Биомедицинские технологии и радиоэлектроника, 2004, №5−6. С. 4−15.
- 5. МоренкоВ. М. Магнитолазеротерапия больных с сенсоневральной тугоухостью. / В. М. Моренко, И. П. Енин. // Рос. оторинолар., №4 (7), 2003. С. 80–82.
- 6. Применение системного анализа при разработке методик восстановления функционирования сенсорных систем. / В. С. Кубланов, А. Г. Васильев, С. А. Коротких и др. // Биомедицинские технологии и радиоэлектроника, №10, 2001, с. 12–20