УДК 618.177:616-036.2(571.54)

А.В. Сафроненко ¹, Л.В. Сутурина ¹, О.А. Громова ², В.П. Ильин ¹

ОСОБЕННОСТИ МИКРОЭЛЕМЕНТНОГО И ГОРМОНАЛЬНОГО СТАТУСА У МУЖЧИН РЕПРОДУКТИВНОГО ВОЗРАСТА ИЗ БЕСПЛОДНЫХ СУПРУЖЕСКИХ ПАР

¹ Научный центр проблем здоровья семьи и репродукции человека СО РАМН (Иркутск)

² Институт микроэлементов ЮНЕСКО (Москва)

Мужское бесплодие встречается очень часто и плохо поддается медикаментозной коррекции. Обследовано 30 мужчин с нарушениями репродуктивной функции (средний возраст: 30 ± 4,58 лет) и 30 фертильных мужчин (средний возраст: 28 ± 4,27 лет). Осуществлено количественное определение микро- и макроэлементов в лобковых волосах методом масс-спектрометрии. В результате проведенного исследования выявлены взаимосвязи микроэлементного и гормонального статуса у мужчин репродуктивного возраста из бесплодных супружеских пар.

Ключевые слова: мужское бесплодие, микроэлементы, гормоны, корреляция

THE PECULIARITIES OF MICROELEMENTAL AND HORMONAL STATUS IN MEN OF REPRODUCTIVE AGE FROM STERILE MARRIED COUPLES

A.V. Safronenko 1, L.V. Suturina 1, O.A. Gromova 2, V.P. Iljin 1

¹ East Siberian Scientific Center SB RAMS, Irkutsk ² Institute of Microelements of UNESCO, Moscow

Male sterility is widely spread and is poorly treated with medicaments. 30 men with disturbance of reproductive function (average age: $30 \pm 4,58$ years) and 30 fertile men (average age: $28 \pm 4,27$ years) were examined. There the quantitative definition of micro- and macroelements in pubic hair by the method of mass-spectrometry has been carried out. As a result of the investigation the correlation of microelemental and hormonal status in men of reproductive age from the sterile married couples has been revealed.

Key words: male sterility, microelements, hormones, correlation

Одной из актуальных и широко обсуждаемых проблем андрологии следует признать состояние репродуктивного здоровья мужчин. Это обусловлено постоянно меняющимся процессом адаптации организма человека к действующим на него экзо- и эндогенным фактором. За последнее время в литературе появился ряд сообщений, свидетельствующих о проведении исследований репродуктивного здоровья населения в связи со сложной демографической ситуацией в России. Нарушение фертильности у мужчин оказывается причиной бесплодного брака в 40 – 50 % наблюдений. Эта проблема с каждым годом приобретает все более острый характер, поскольку в настоящее время до 15 % браков являются бесплодными, а по некоторым данным из пяти супружеских пар одна [1, 3, 5].

В настоящее время отмечается рост числа исследований по выявлению роли различных микроэлементов в генезе бесплодия у мужчин [2, 4]. Интерес к изучению биоэлементного статуса при различных нарушениях репродуктивного здоровья в Восточной Сибири определяется, с одной стороны, природными геохимическими особенностями — например, существованием йоддефицита, которые существенно влияют на состояние эндокринной системы. В то же время в регионе известны и некоторые природные аномалии с избыточным содержанием ряда элементов, которые могут оказывать воздействие на состояние репродуктивной системы и орга-

низма в целом. Все вышесказанное приводит к необходимости оценки взаимосвязей нарушений репродуктивной функции у мужчин в зависимости от состояний микроэлементного (МЭС) и гормонального статуса.

Целью настоящего исследования явилось выявление особенностей микро- и макроэлементов в лобковых волосах и гормонального фона у мужчин репродуктивного возраста из бесплодных супружеских пар.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Всего обследовано 60 мужчин в возрасте от 21 до 42 лет, 30 — из бесплодных супружеских пар с нарушением фертильности и 30 - из группы контроля с сохранной фертильной функцией. Изучение гормонального фона проводилось с использованием тест системы «ДИАС» (Россия) на радиоиммунном анализаторе «Иммунотест» (Россия) и тест системы «Алко-био» (Россия) на иммуноферментном анализаторе «Cobos ELL». Изучение микроэлементного статуса выполнено сотрудниками Независимого Экспертно-Аналитического Совета по разработке и внедрению современных методов исследования и анализа на базе кафедры неорганической и аналитической химии МСХА им. К.А. Тимирязева и кафедры клинической и лабораторной диагностики РГМУ. Проведено количественное определение микрои макроэлементов в лобковых волосах мужчин методами атомно-абсорбционной спектрометрии

с атомизацией в пламени и масс-спектрометрии с ионизацией в индукционно связанной плазме.

Исследование соответствовало этическим стандартам комитетов по биомедицинской этике, разработанным в соответствии с Хельсинской декларацией с поправками от 2000 г. и «Правилами клинической практики в РФ» от 1993 г.

Статистический анализ проводили с помощью современных вычислительных процедур и методов. Использованы различные методы параметрической и непараметрической статистики. Многофакторный дискриминантный анализ позволил выявить наиболее информативные показатели и оценки их эффективности для классификации наблюдений.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

На первом этапе был проведен ретроспективный анализ спермограмм 320 мужчин репродуктивного возраста из бесплодных супружеских пар: у 51 % мужчин выявлена нормоспермия, у 19 % — астенозооспермия, у 14 % — олигозооспермия, у 11 % — тератозооспермия и у 5 % — аспермия.

Далее была сформирована основная группа пациентов, которая составила 30 человек. В нее вошли мужчины фертильного возраста из бесплодных супружеских пар с установленной патоспермией. Обязательным условием включения в основную группу явилось наличие достоверных отклонений показателей эякулята от стандартов ВОЗ (1999). Критериями исключения были — наличие факта беременности у партнерши в анамнезе и тяжелая соматическая патология.

Параллельно была сформирована группа контроля численностью 30 человек, в нее вошли муж-

чины с реализованной репродуктивной функцией и, нормальными показателями спермограммы, подобранные по принципу «копия — пара». Критериями исключения из группы контроля были: ожирение, тяжелая соматическая патология, достоверные отклонения показателей эякулята от стандартов ВОЗ. Незначительное снижение количества сперматозоидов в 1 мл спермы, наблюдаемое у 3,3 % фертильных мужчин не было критерием для исключения из группы. Основным группообразующим признаком явились данные спермограммы.

Наибольшая доля нарушений показателей спермограммы в основной группе приходится на снижение количества сперматозоидов (олигозооспермия) в 1 мл (< 20 млн.) - 43,3 % случаев. При оценке подвижности сперматозоидов по критерию ВОЗ (а + b > 50 %) выявлено, что у 40 % мужчин из основной группы выявлено снижение подвижности сперматозоидов (астенозооспермия). У 6,7 % мужчин с нарушенной фертильностью выявлено повышенное количество сперматозоидов с нарушенной морфологией (тератозооспермия), в дальнейшем в связи с малой репрезентативностью выборки мужчины с тератозооспермией были исключены из сравнительного анализа.

При сравнительной оценке гормональных показателей гипофизарно-тестикулярной, гипофизарно-тиреоидной и гипофизарно-надпочечниковой систем у фертильных мужчин и пациентов с патоспермией и в подгруппах мужчин с олигоспермией и астеноспермией были получены следующие данные.

Уровень гонадотропных гормонов гипофиза и пролактина в группах обследуемых мужчин находились в пределах физиологической нормы.

Таблица 1 Характеристика гормональных показателей у мужчин контрольной группы и пациентов с патоспермией (M ± m)

Показатель	Группа контроля (n = 30), p < 0,05	Бесплодие		
		Основная группа мужчин с патоспермией (<i>n</i> = 30), <i>p</i> < 0,05	Группа мужчин с олигоспермией (n = 13), p < 0,05	Группа мужчин с астеноспермией (n = 30), p < 0,05
Пролактин, мЕд/мл	275,7 ± 22,8	389,3 ± 60,4*	281,3 ± 30,5***	439,2 ± 87,6***
ФСГ, мЕд/мл	2,0 ± 0,29	5,4 ± 0,67*, **, ***	6,6 ± 1,4***	5,9 ± 1,04***
ЛГ, мЕд/мл	4,1 ± 0,48	3,2 ± 0,45	3.3 ± 0.8	3,5 ± 0,49
Тестостерон, пМ/л	17,6 ± 0,91	20,2 ± 1,5*	19,6 ± 2,6	22,5 ± 2,3
ТТГ, мЕд/мл	2,0 ± 0,18	2,0 ± 0,15	2,0 ± 0,2	1,97 ± 0,26***
Т3, нМ/л	1,7 ± 0,07	2,5 ± 0,12*, **	2,3 ± 0,2***	2,5 ± 0,12***
св. Т3, пМ/л	4,9 ± 0,12	3,6 ± 0,12**, ***	3,8 ± 0,19***	3,4 ± 0,9***
Т4, нМ/л	99,7 ± 4,7	134,7 ± 4,9**, ***	129,7 ± 9,6***	142,3 ± 8,2***
св. Т4, пМ/л	15,2 ± 0,5	15,2 ± 0,6	14,8 ± 1,05	15,2 ± 0,9
ДГЭАС, мкмоль/л	6,3 ± 0,9	5,97 ± 0,46*	6,3 ± 0,8	5,9 ± 0,9***
Кортизол, нМ/л	494,8 ± 24,1	442,17 ± 21,7	436,2 ± 30,2	470,9 ± 0,9
17-ОН-ПГ, нмоль/л	4,0 ± 0,2	3,84 ± 0,41	3,8 ± 0,4	4,5 ± 0,7

Примечание: * – статистически значимые различия дисперсий по F-критерию Фишера на уровне α = 0,05; ** – статистически значимые различия средних величин по T-критерию Стьюдента на уровне α = 0,05; *** – статистически значимые различия по трем ранговым критериям: Wald–Wolfowitz, Колмогорова–Смирнова, Манна–Уитни, уровень значимости (p < 0,05).

Клиническая медицина

При оценке уровня пролактина в группе мужчин как с олигоспермией, так и с астеноспермией отмечена относительная активация пролактинергической системы в сравнении с группой контроля более широкий диапазон значений оказался в группе мужчин с патоспермией. Несмотря на то, что уровень пролактина у мужчин с патоспермией имеет меньшее диагностическое значение, чем у женщин, этот показатель в комплексе с другими может свидетельствовать о возможности нарушения репродуктивной функции на уровне гипоталамо-гипофизарной системы. Уровень ФСГ был относительно повышен (в пределах референтных значений) как в группе мужчин с олигоспермией, так и при астеноспермии по сравнению с группой контроля, с более широким диапазоном значений в группе мужчин с патоспермией (табл. 1).

При сравнении уровней тестостерона были получены достоверные различия, с более широким диапазоном значений тестостерона у мужчин с патоспермией, при этом концентрации тестостерона не выходили за пределы референтных значений.

При анализе стероидопродуцирующей функции надпочечников отмечено существен-

ное уменьшение диапазона значений ДГЭАС в сыворотке крови у мужчин с патоспермией и отмечено снижение уровня ДГЭАС в группе мужчин с астеноспермией по сравнению с контрольной группы.

Анализ средней концентрации ТЗ свидетельствует о более высоком (в пределах референтных значений) его уровне, с более широким диапазоном его значений у пациентов с патоспермией. В то же время выявлено снижение уровня свободной фракции ТЗ у пациентов с патоспермией по сравнению с группой контроля как в группе мужчин с олигоспермией, так и при астеноспермии.

Анализ концентрации Т4 у мужчин основной и контрольной групп показал, что средняя концентрация Т4 у пациентов с патоспермией превышает ее уровень в группе контроля.

Нами был проведен сравнительный анализ элементного состава у мужчин с патоспермией и группе контроля в лобковых волосах.

Как следует из полученных результатов, определен более низкий уровень йода и селена в лобковых волосах у мужчин с патоспермией по сравнению с обследуемыми фертильными мужчинами (табл. 2).

Таблица 2 Содержание эссенциальных элементов в лобковых волосах у мужчин с патоспермией и в группе контроля (M ± m)

Эссенциальные элементы	Субстрат (мг/кг)	Группа контроля (<i>n</i> = 30), <i>p</i> < 0,05	Группа мужчин с патоспермией, (n = 30), p < 0,05
Fe	лобковые волосы	18,78 ± 0,79	17,49 ± 0,95
I	лобковые волосы	13,09 ± 6,77	2,08 ± 0,19*, **, ***
Cu	лобковые волосы	17,3 ± 0,92	18,93 ± 0,75
Zn	лобковые волосы	161,7 ± 8,6	150,19 ± 9,38
Со	лобковые волосы	0,0 ± 0,0033	0,014 ± 0,0018
Cr	лобковые волосы	0,55 ± 0,057	0,53 ± 0,0409
Мо	лобковые волосы	0,03±0,0142	0,016 ± 0,001
Se	лобковые волосы	0,67 ± 0,047	0,489 ± 0,031*, **, ***
Mn	лобковые волосы	0,67 ± 0,047	0,489 ± 0,031

Примечание: * – статистически значимые различия по ранговому критерию Wald-Wolfowitz; ** – статистически значимые различия по ранговому критерию Колмогорова-Смирнова; *** – статистически значимые различия по ранговому критерию Манна–Уитни.

Таблица 3 Содержание условно-эссенциальных элементов в лобковых волосах у мужчин с патоспермией и в группе контроля ($M\pm m$)

Условно-эссенциальные элементы	Субстрат (мг/кг)	Группа контроля (n = 30), p < 0,05	Группа мужчин с патоспермией, (n = 30), p < 0,05
As	лобковые волосы	0,01 ± 0,0011	0,003 ± 0,0007*, **, ***
В	лобковые волосы	8,85 ± 0,52	4,97 ± 0,6008*, **, ***
Br	лобковые волосы	2,63 ± 0,25	3,88 ± 0,56
Li	лобковые волосы	0,02 ± 0,001	0,015 ± 0,0007**, ***
Ni	лобковые волосы	0,01 ± 0,001	0,013 ± 0,0012
V	лобковые волосы	0,01 ± 0,0009	0,012 ± 0,001

Примечание: * – статистически значимые различия по ранговому критерию Wald–Wolfowitz; ** – статистически значимые различия по ранговому критерию Колмогорова–Смирнова; *** – статистически значимые различия по ранговому критерию Манна–Уитни.

Таблица 4 Содержание токсичных элементов в лобковых волосах мужчин с патоспермией и в группе контроля (M ± m)

Токсичные элементы	Субстрат (мг/кг)	Группа контроля (<i>n</i> = 30), <i>p</i> < 0,05	Группа мужчин с патоспермией (n = 30), p < 0,05
AI	лобковые волосы	19,9 ± 1,4	19.9 ± 0.84
Cd	лобковые волосы	0,004 ± 0,0009	0,001 ± 0,0005*, **, ***
Pb	лобковые волосы	1,63 ± 0,05	1,23 ± 0,054*, **, ***
Hg	лобковые волосы	0,003 ± 0,0007	0,003 ± 0,0019
Ве	лобковые волосы	0,0008 ± 0,00004	0,00002 ± 0,000002
Ва	лобковые волосы	2,48 ± 0,3	3,44 ± 0,47**
TI	лобковые волосы	0,002 ± 0,0006	0,001 ± 0,0006**, ***

Примечание: * - статистически значимые различия по ранговому критерию Wald-Wolfowitz; ** - статистически значимые различия по ранговому критерию Колмогорова-Смирнова; *** - статистически значимые различия по ранговому критерию Манна-Уитни.

Содержание условно-эссенциальных элементов в лобковых волосах у мужчин с патоспермией и в группе контроля представлены в таблице 3.

При исследовании условно-эссенциальных элементов (табл. 3) определено снижение уровня мышьяка, бора и лития в лобковых волосах у мужчин с патоспермией по сравнению с группой контроля.

Содержание токсичных элементов в лобковых волосах у мужчин с патоспермией и в группе контроля представлены в таблице 4.

При анализе содержания токсичных элементов, выявлено снижение уровня кадмия, свинца и талия, и повышение уровня бария в лобковых волосах у мужчин с патоспермией по сравнению с группой контроля (табл. 4).

Для анализа внутри- и межсистемных отношений в группе здоровых мужчин и пациентов с патоспермией был проведен корреляционный анализ. Проведенные исследования показали, что в группе пациентов с патоспермией межсистемные взаимосвязи претерпевают значительные изменения. В группе бесплодных мужчин отмечены отрицательные корреляционные взаимосвязи между показателями гормонально-метаболических систем и микроэлементами: Si (лоб. волосы) — T4 (r = -0.66,p < 0.027), Si (лоб. волосы) — 17-ОН-ПГ (r = -0.7, p < 0.015), Ве (лоб. волосы) — $\Lambda\Gamma$ (r = -0.78, p < 0.026), и положительные корреляционные взаимосвязи: Мо (лоб. волосы) - ПРЛ (r=0.78, p < 0,02), Br (лоб. волосы) — $\Delta\Gamma$ А (r = 0,6, p < 0,015), Ве (лоб. волосы) — Φ СГ (r = 0.97, p < 0.014), Pb (лоб. волосы) Дв. св (r = 0.59, p < 0.013).

Таким образом, в группе пациентов с патоспермией отсутствуют межсистемные взаимосвязи между показателями гормонально-метаболической системы и микроэлементного статуса, характерные для группы контроля и возникают дополнительные корреляционные связи, свидетельствующие о переходе функционирования этих систем на иной уровень.

Применение дискриминантного анализа позволило выявить наиболее информативные показатели у мужчин с патоспермией — ими

оказались показатели гормональной системы и элементного статуса: свободные Т3 и Т4, Φ С Γ , Mq, Rb, Mn, Cr, Zn.

Уравнения канонической величины для гормональной системы и элементного статуса имеют следующий вид:

$$K1 = -1.4 + 1.049 \times \text{cb.T3} - 0.023 \times \text{T4} - 0.152 \times \Phi \text{CC}.$$

$$K2 = 5.58 - 0.105 \times Mg - 19.65 \times Pb + 2.77 \times Mn - 116.32 \times As - 2.69 \times Cr - 0.008 \times Zn.$$

Точность правильной классификации мужчин по статусу фертильности с использованием данных уравнений составила соответственно 93,0 и 97,0 %

выводы

- 1. Основными отличиями состояния нейро-эндокринной системы у обследованных мужчин с олиго- и астенозооспермией являются: активация пролактинергической функции гипофиза и относительное повышение фолликулостимулирующего гормона, а также снижение дигидроэпиандростерона и свободного трийодтиронина.
- 2. Элементный состав лобковых волос пациентов с патоспермией характеризуется значимым снижением содержания I, Se, As, B и Li и повышением содержания Ва в сравнении с фертильными мужчинами.
- 3. Проведенные исследования выявили особенности взаимодействий и изменений функциональных связей микроэлементного и гормонального статуса у мужчин репродуктивного возраста, которые необходимо учитывать при лечении и профилактике мужского бесплодия.

ЛИТЕРАТУРА

- 1. Лещенко Я.А. Демографические процессы и динамика общественного здоровья в Иркутской области в 90-е годы // Проблемы соц. гигиены, здравоохранения и истории медицины. 2000. N $\!\!\!\!\!\!\!$ $\!\!\!\!\!$ 3. С. 18 22.
- 2. Ребров В.Г., Громова О.А. Витамины и микроэлементы. М. : АЛЕВ-В, 2003. 670 с.

3. Репродуктивная эндокринология / под ред. С.С.К. Йена, Р.Б. Джаффе : пер. с англ. — М. : Медицина. — 1998. — 704 с.

4. Скальный А.В. Микроэлементозы человека: диагностика и лечение. — М.: КМК, 1999. — 96 с. 5. Тиктинский О.Л., Михайличенко В.В. Андро-

логия. — СПб. : Медиа Пресс, 1999. — 372 - 374 с.

Сведения об авторах

Сафроненко Александр Викторович – к.м.н., м.н.с. лаборатории гинекологической эндокринологии Научного центра проблем здоровья семьи и репродукции человека СО РАМН (664003, г. Иркутск, ул. Тимирязева, 16; тел.: 8 (3952) 29-22-07; e-mail: zayatsrulez@mail.ru)

Сутурина Лариса Викторовна – д.м.н., профессор, руководитель отдела охраны репродуктивного здоровья Научного центра проблем здоровья семьи и репродукции человека CO PAMH

Громова Ольга Алексеевна – д.м.н., профессор, Институт микроэлементов ЮНЕСКО

Ильин Владимир Петрович – д.б.н., профессор, заведующий лабораторией математического анализа и моделирования Научного центра проблем здоровья семьи и репродукции человека СО РАМН