болезней и семейной медицины Омской государственной медицинской академии.

СМЯЛОВСКИЙ Вадим Эдуардович, кандидат медицинских наук, заведующий отделом функциональных методов исследования Клинического диагностического центра.

ДРУК Инна Викторовна, кандидат медицинских наук, доцент кафедры внутренних болезней и

семейной медицины Омской государственной медицинской академии.

Адрес для переписки: 644043, г. Омск, ул. Ленина, 12.

Статья поступила в редакцию 01.08.2011 г. © Л. Г. Гальцова, В. Э. Смяловский, И. В. Друк

УДК 612.118:611.329/348+612.014.5

Г. И. НЕЧАЕВА Е. А. ЛЯЛЮКОВА Н. И. ОРЛОВА

Омская государственная медицинская академия

Клинический диагностический центр, г. Омск

ОСОБЕННОСТИ АБДОМИНАЛЬНОГО КРОВОТОКА У ПАЦИЕНТОВ РАЗЛИЧНЫХ КОНСТИТУЦИОНАЛЬНЫХ ТИПОВ

Представлены параметры ультразвуковой доплерографии, определяемые при исследовании воротной и верхней брыжеечной вен, общей печеночной, селезеночной и верхней брыжеечной артерий у пациентов с разным типом конституции в возрасте от 16 до 40 лет. Выявлены различия в диаметре и объемных скоростях кровотока в исследуемых сосудах.

Ключевые слова: тип конституции, диаметр артерий и вен, скорость кровотока.

При нарушениях кровоснабжения органов пищеварения, имеющего важное физиологическое значение, создаются условия для развития абдоминальной ишемии [1, 2].

До настоящего времени для оценки абдоминального кровообращения применялись различные ангиографические методы: ангиография, контрастная магнитно-резонансная венопортография и др. Однако большинство из них не получили широкого применения в клинической практике в связи с инвазивностью и высокой лучевой нагрузкой.

Ультразвуковая доплерография является одним из современных неинвазивных методов оценки гемодинамики. На сегодняшний день исследователями представлен широкий спектр показателей доплерографии сосудов, обеспечивающих абдоминальный кровоток [3—5]. Подчеркивается наличие гендерных различий, влияние на показатели кровотока разных факторов, включая уровень физической активности, возраст пациентов и т. д. [3, 5].

Оценка абдоминальной гемодинамики с учетом фенотипических характеристик пациента позволит правильно интерпретировать доплерографические показатели и своевременно диагностировать проявления абдоминальной ишемии.

Цель работы — изучение особенностей абдоминальной гемодинамики у пациентов различных конституциональных типов.

Материал и методы исследования

В исследование было включено 113 человек, 75 из них — пациенты астенической конституции, 38 — нормостенической конституции. Критерии исключения: острые или хронические заболевания органов пищеварения в стадии обострения, заболевания сердечно-сосудистой системы как на момент исследования, так и по данным анамнеза. Группы были сопоставимы по полу и возрасту.

Оценка доплерографических показателей проводилась на ультразвуковом сканере Sonoace-8000 (Medison, Южная Корея). Всем пациентам была выполнена ультразвуковая доплерография абдоминальных сосудов: воротной и верхней брыжеечной вены (ВВ и ВБВ), общей печеночной (ОПА), верхней брыжеечной (ВБА) и селезеночной артерий (СА) натощак и после пищевой нагрузки. Оценивались: диаметр (D, мм), объемные скорости кровотока по артериям (VF1, мл/мин) и венам (V vol1, мл/мин) натощак и после пищевой нагрузки (VF2, мл/мин, V vol2, мл/мин).

Результаты и их обсуждение

Пациенты астенической конституции, по сравнению с пациентами нормостенического телосложения, отличались меньшими показателями индекса массы

Таблица 2

Характеристика пациентов

Показатели	Пациенты астенического телосложения							Пациенты нормостенического телосложения						
	М	P50	P25	P75	SD	SE	M	P50	P25	P75	SD	SE	p	
Возраст	29,10	23,00	19,00	36,00	14,29	1,65	25,29	23,00	19,00	26,00	9,79	1,59	0,272	
ИМТ	18,61	18,62	17,10	20,00	2,03	0,24	23,46	23,00	21,00	25,00	3,27	0,54	0,0001	
Рост	173,85	173,00	165,00	182,00	10,72	1,25	167,19	165,00	161,00	177,00	9,76	1,65	0,0001	
Масса тела	56,49	56,00	50,00	63,00	9,59	1,12	64,09	64,00	55,00	74,00	16,43	2,78	0,0001	
МОК	4938,66	4900,00	4000,00	5700,00	1746,40	213,36	5256,25	5250,00	4450,00	5950,00	1203,74	212,79	0,042	

Примечание, здесь и далее. ИМТ — индекс массы тела; МОК — минутный объем кровообращения; М — медиана; Р50, Р25, Р75 — процентили; SD — стандартное отклонение; SE — стандартная ошибка

Гемодинамические показатели у пациентов различных конституциональных типов

Сосуды	Пациенты астенического телосложения							Пациенты нормостенического телосложения						
	М	P50	P25	P75	SD	SE	М	P50	P25	P75	SD	SE	P	
ВВ D, мм	9,19	9,00	9,00	10,00	0,83	0,10	10,73	10,00	9,00	10,00	5,18	0,85	0,000	
BB Vvol, мл/мин	1403,90	1372,00	1129,00	1618,00	455,79	54,09	1463,78	1441,00	1296,00	1637,00	368,15	60,52	0,066	
ВБВ D, см	5,37	5,00	5,00	6,00	0,72	0,09	6,53	5,00	5,00	6,00	5,69	0,96	0,052	
ВБВ Vvol, мл/мин	470,10	426,00	363,00	543,00	165,64	19,94	444,38	432,50	340,00	513,00	155,00	26,58	0,401	
ОПА D, мм	4,17	4,00	4,00	4,50	0,59	0,07	7,66	4,50	4,20	4,80	17,70	3,18	0,000	
ОПА VF, ма/мин	405,52	381,50	325,00	466,00	135,83	16,72	433,13	416,00	350,00	521,00	132,62	24,21	0,026	
СА D, мм	4,43	4,30	4,00	5,00	0,71	0,09	7,74	5,00	4,60	5,00	15,74	2,87	0,000	
CA VF, ма/мин	455,72	442,00	338,00	561,00	168,45	20,89	494,19	492,50	442,00	575,00	155,73	28,43	0,040	
ВБА D, см	5,41	5,40	5,00	6,00	0,64	0,08	6,93	5,75	5,00	6,00	37,45	8,37	0,108	
ВБА VF, ма/мин	664,18	684,00	541,00	850,00	319,05	39,88	803,10	781,50	705,50	930,00	255,18	57,06	0,001	

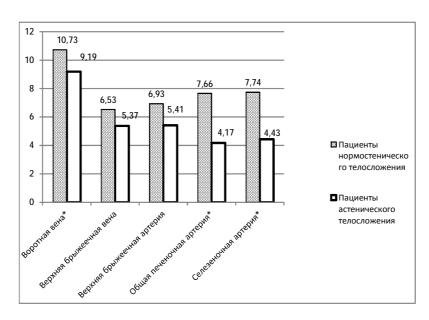


Рис. 1. Диаметры сосудов (мм), обеспечивающих спланхнитическое кровообращение, у пациентов различных конституциональных типов (* — различия статистически значимы)

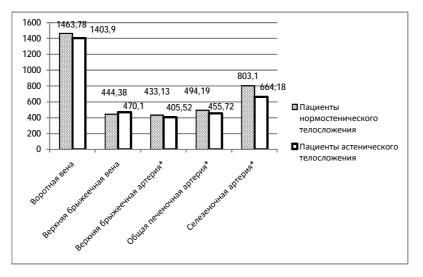


Рис. 2. Показатели объемного кровотока по сосудам (мл/мин), обеспечивающим спланхнитическое кровообращение, у пациентов различных конституциональных типов (* — различия статистически значимы)

тела ($18,61\pm0,24$ кг/м² против $23,46\pm0,54$ кг/м²; p=0,0001), площади поверхности тела ($1,68\pm0,02$ м² против $1,75\pm0,04$ м²; p=0,0001) и минутного объема кровообращения ($4938,66\pm213,36$ мл против $5256,25\pm\pm212,79$ мл; p=0,042) (табл. 1).

Кроме того, у них зарегистрированы меньшие диаметры ВВ (9,19 \pm 0,10 мм против 10,73 \pm 0,85 мм; р=0,0001), ОПА (4,17 \pm 0,07 мм против 7,66 \pm 3,18 мм; р=0,0001) и СА (4,43 \pm 0,09 мм против 7,74 \pm 2,87 мм; р=0,0001) (табл. 2), а также отмечена тенденция к меньшему диаметру ВБВ и ВБА (р=0,052; р=0,108). Выявлено снижение объемной скорости кровотока по ОПА (405,52 \pm 16,72 мл/мин против 433,13 \pm 24,21 мл/мин; р=0,026); СА (455,72 \pm 20,89 и 495,19 \pm 28,43 мл/мин соответственно (р=0,040); ВБА (664,18 \pm 39,88 мл/мин и 803,10 \pm 57,06 мл/мин; р=0,001) с тенденцией к меньшим показателям объемной скорости кровотока по ВВ натощак (р=0,066).

На рис. 1 и 2 представлены гемодинамические показатели спланхнитического кровообращения у пациентов различных конституциональных типов. Показатели абдоминальной гемодинамики коррелировали с антропометрическими показателями: площадью поверхности тела и кровотоком по CA (r=0,54), ОПА (r=0,69), ВБА (r=0,55) и массой тела (r=0,49, r=0,57) и r=0,51 соответственно).

Заключение

Астенический тип конституции, по сравнению с пациентами нормостенического телосложения, ассоциируется как с меньшими диаметрами воротной вены, общей печеночной и селезеночной артерий, так и с меньшими значениями объемных скоростных показателей по общей печеночной, селезеночной и верхней брыжеечной артериям, минутного объема кровообращения. Выявленные различия у пациентов разных конституциональных типов по гемодинамическим показателям, а также установленная корреляция параметров кровотока с антропометрическими показателями пациентов (площадь поверхности тела, индекс массы тела) свидетельствуют о

значимости конституциональных характеристик пациента в формировании определенного типа абдоминальной гемодинамики. Оценивать результаты доплерографии сосудов спланхнитического кровообращения следует с учетом конституциональнотипологических особенностей пациента.

Библиографический список

1. Коломенцева, М. В. Оценка состояния гемодинамики в непарных висцеральных ветвях брюшного отдела аорты у больных сахарным диабетом / М. В. Коломенцева, В. В. Митьков // Ультразвуковая и функциональная диагностика. — 2001. — № 1. — С. 11-16.

2. Митьков, В. В. Доплерография в диагностике заболеваний печени, желчного пузыря, поджелудочной железы и их сосудов / В. В. Митьков. — М. : Издательство «Видар-М», 2000. — 146 с.

3. Митьков, В. В. Доплерографические показатели чревного кровотока в норме / В. В. Митьков // Ультразвуковая и функциональная диагностика. — 2001. — \mathbb{N} 1. — С. 53—56.

4. Zwiebel, W. J. Introduction to Vascular Ultrasonography (5th ed.) / W. J. Zwiebel, J. S. Pellerinto // Elsevier Inc. Philadelphia, 2005. — 646 p.

5. Burns, P. Interpretation and analysis of Doppler signals // Clinical Application of Doppler Ultrasound, K. J. W. Taylor [et al.] eds., N Y Raven Press, 1988. -246 p.

НЕЧАЕВА Галина Ивановна, доктор медицинских наук, профессор, заведующая кафедрой внутренних болезней и семейной медицины Омской государственной медицинской академии.

ЛЯЛЮКОВА Елена Александровна, кандидат медицинских наук, доцент кафедры внутренних болезней и семейной медицины Омской государственной медицинской академии.

ОРЛОВА Наталья Ивановна, начальник медицинской службы Клинического диагностического пентра

Адрес для переписки: 644043, г. Омск, ул. Ленина, 12.

Статья поступила в редакцию 01.08.2011 г.

© Г. И. Нечаева, Е. А. Лялюкова, Н. И. Орлова