О нетипичных вариантах дислипидемий при инфаркте миокарда и нестабильной стенокардии

Б.М. Липовецкий

Липидный центр Института мозга человека РАН. Санкт-Петербург, Россия

About atypical dyslipidemia variants in myocardial infarction and unstable angina

B.M. Lipovetsky

Lipid Centre, Human Brain Institute, Russian Academy of Science. St. Petersburg, Russia

Цель. Анализ нетипичных вариантов дислипидемий (ДЛП) при ишемической болезни сердца (ИБС).

Материал и методы. Обследовались больные реабилитационного отделения стационара, перенесшие инфаркт миокарда (ИМ). За 5 лет были отобраны 78 больных с резко выраженной гипертриглицеридемией (ГТГ) или избирательным снижением антиатерогенной фракции липопротеидов. Больные с наиболее типичными для ИБС вариантами ДЛП (IIa, IIb фенотипы) в этом исследовании не участвовали. Средний возраст обследованных -46 ± 1 лет. Все больные были разделены на три группы: со смешанной гиперлипидемией (ГЛП) за счет холестерина (ХС) и триглицеридов (ТГ), но с преобладанием ГТГ — группа I (n=24); с изолированной ГТГ — группа II (n=23); с избирательно низким содержанием липопротеидов высокой плотности (ЛВП) — группа III (n=31).

Результаты. Группа I характеризовалась выраженным повышением уровня XC и экстремальным подъемом уровня $T\Gamma - 6.8\pm0.5$ ммоль/л); группа II с изолированно высоким содержанием $T\Gamma - 4.1\pm0.4$ ммоль/л. В группе III отмечался избирательно низкий уровень XC ЛВП -0.82 ± 0.02 ммоль/л.

Заключение. Атеросклероз и его осложнения в ряде случаев могут развиваться не только на основе ГЛП Па и Пь типов, но и вследствие ГТГ или избирательного снижения антиатерогенной фракции липопротеидов. Все первичные ДЛП наследственно обусловлены, но в большинстве своем связаны не с моногенными, а с полигенными дефектами, т. е. зависят от функционально значимых нуклеотидных полиморфизмов в составе генов-участников регуляции липидного обмена.

Ключевые слова: дислипидемия, гипертриглицеридемия, антиатерогенная фракция липопротеидов.

Aim. To analyse atypical variants of dyslipidemia (DLP) in coronary heart disease (CHD).

Material and methods. The study included rehabilitation unit patients with myocardial infarction (MI). Over 5 years, 78 patients with severe hypertriglyceridemia (HTG) or selective decrease in anti-atherogenic lipoproteins were selected. The patients with the DLP phenotypes most typical for CHD (IIa, IIb) were not included in the study. Mean age of the participants was 46 ± 1 years. All participants were divided into three groups: with combined hyperlipidaemia (HLP) due to increased cholesterol (CH) and triglycerides (TG), but with prevalent HTG – Group I (n=24); with isolated HTG – Group II (n=23); with selective reduction in high-density lipoproteins (HDL) – Group III (n=31).

Results. Group I was characterised by substantial increase in the levels of CH and TG $(6.8\pm0.5 \text{ mmol/l})$; Group II – by isolated increase in TG level $(4.1\pm0.4 \text{ mmol/l})$; and Group III – by selective reduction in HDL-CL concentration $(0.82\pm0.02 \text{ mmol/l})$.

Conclusion. Atherosclerosis and its complications might develop not only in HLP IIa and IIb, but also due to HTG or decreased anti-atherogenic lipoprotein levels. All primary DLP are hereditary, but typically they are linked to polygenic defects — i.e., are dependent on functionally important nucleotide polymorphisms in genes regulating lipid metabolism.

Key words: Dyslipidemia, hypertriglyceridemia, anti-atherogenic lipoprotein fraction.

© Коллектив авторов, 2009 e-mail: borlip@mail.spbnit.ru

Тел.: (812) 234-13-90, факс: (812) 234-32-47

[Липовецкий Б.М. – главный научный сотрудник]

В сознании современного врача прочно сложилось стереотипное представление о том, что ведущим фактором риска (ФР) подавляющего большинства случаев ишемической болезни сердца (ИБС) является гиперхолестеринемия (ГХС). Это действительно можно считать правилом, но из него, очевидно, есть немало исключений. В самом деле, при исследовании липидного состава крови у больных ИБС чаще всего находят Па или Пь типы гиперлипидемии (ГЛП) по классификации ВОЗ [6], т. е. изолированную ГХС или ГХС в сочетании с умеренно повышенным уровнем триглицеридов (ТГ).

Не редко приходится лечить больных ИБС, у которых имеет место IV тип ГЛП: значительное повышение содержание ТГ (в пределах 2,8-4,5 ммоль/л) при мало измененной концентрации холестерина (XC).

Что касается I, III и V типов ГЛП, то они встречаются крайне редко, при этом вопрос о том, возникает ли ИБС при I и V типах ГЛП остается открытым, лишь III тип ГЛП характеризуется распространенным атеросклерозом, но в этом случае наблюдается одинаково высокий уровень как ХС, так и ТГ.

Поскольку многообразие дислипидемий (ДЛП) не исчерпывается типами ГЛП, предусмотренными классификацией ВОЗ, целью этой работы стал анализ тех вариантов ДЛП (кроме IIa и IIb), которые сравнительно часто можно встретить у больных, перенесших инфаркт миокарда (ИМ).

Материалы и дизайн исследования

На протяжении 5 лет в липидном центре проводилось стандартизованное определение липидного состава крови и последующее консультирование больных, проходивших курс реабилитации после перенесенного ИМ или госпитализированных по поводу нестабильной стенокардии (НС). За этот период были отобраны 78 больных с ДЛП, которая характеризовалась либо резко выраженной гипертригицеридемией (Γ TГ)>2,8 ммоль/л, либо отсутствием ГЛП, но наличием выраженного атерогенного сдвига за счет снижения антиатерогенной фракции — XC липопротеидов высокой плотности (XC ЛПВП), т. е. гипоальфалипопротеидемией (Γ ипо α ЛП).

Из 78 больных (средний возраст 46±1,0 год) были 72 мужчины и только 6 женщин. По характеру липидного состава крови этих больных детерминировали на три группы. В группу I вошли больные со "смешанной" или комбинированной ГЛП за счет XC — общий XC (ОХС) >6,7 ммоль/л и ТГ, но в группу были включены только такие больные, у которых доминировал очень высокий

уровень ТГ. По отношению к норме концентрация ТГ у этих больных была повышена значительно больше, чем содержание ОХС. Эта особенность отличала данный вариант ГЛП от ГЛП IIb и III типов.

Следует отметить, что при уровне $T\Gamma > 4,5$ ммоль/л расчет XC липопротеидов низкой плотности (ЛНП) и коэффициента атерогенности (КА) не проводили, т. к. при этом получаются заведомо ошибочные величины.

В группу II изолированной ГТГ были включены больные с ГТГ (ТГ>2,8 ммоль/л) без ГХС (ОХС <6,4 ммоль/л); это группа изолированной ГТГ.

Группа III включала больных с Гипо α ЛП без ГЛП, с содержанием XC ЛНП < 4,4 ммоль/л, уровнем ТГ < 2,8 ммоль/л и концентрацией XC ЛВП<1,05 ммоль/л.

КА рассчитывали, когда это было возможно, по методу А.Н. Климова (ОХС - ХС ЛВП) / ХС ЛВП.

Результаты

В соответствии с указанными критериями отбора в группу I-c комбинированной ГЛП вошли 24 больных, в группу II-c изолированной ГТГ -23, в группу III-c избирательной Гипо α ЛП (без ГЛП) -31 больной (таблица 1).

Из 24 больных группы I 14 перенесли ИМ, у 10 был синдром НС. В группе II ИМ перенесли 17 больных, 6 были госпитализированы по поводу НС. Группу III составили 24 пациента после ИМ и 7 — с синдромом НС.

Показатели липидного состава крови по группам представлены в таблице 1. Содержание ОХС было значимо повышено только в группе I (7.9 ± 0.24) ммоль/л). В этой же группе самым высоким оказался средний уровень $T\Gamma - 6.8 \pm 0.53$ ммоль/л. Группа II характеризуется выраженным изолированным повышением уровня $T\Gamma - 4,1\pm0,35$ ммоль/л, хотя ГТГ была здесь менее выражена, чем в группе I, но значительно превышала норму и уровень ТГ в группе III. Еще одно отличие группы II от группы I связано с нормальным уровнем XC крови у больных группы II. Группа III отличалась от I и II тем, что содержание ОХС и ТГ крови у больных этой группы не было повышенным, т. е. ГЛП отсутствовала, но при этом определялся выраженный атерогенный сдвиг за счет снижения ХС ЛВП - 0.82 ± 0.02 ммоль/л. Это подтверждается высоким $KA - 5,4\pm0,17$ ед., который оказался почти таким же высоким, как и в группе II.

Убедительных отличий в тяжести клинического течения ИБС в дифференцированных группах не было, хотя доля больных НС в группе I была

Таблица 1 Липидный состав крови (ммоль/л) в трех группах больных ИБС с разными вариантами ДЛП

№ группы	Кол-во больных,	n OXC	ТΓ	ХС ЛВП	ХС ЛНП	КА, ед.
I	24	*7,9±0,2	*6,8±0,5	$0,87\pm0,05$	-	-
II	23		$4,1\pm0,4$	$0,85\pm0,03$	$3,1\pm0,15$	$5,9\pm0,44$
III	31	$5,2\pm0,1$	"1,8±0,1	$0,82\pm0,02$	$3,6\pm0,08$	$5,4\pm0,17$

Примечания: * — достоверные отличия показателей между группами I и II и группами I и III; " — достоверные отличия показателя между группами III и II; I — комбинированная ГЛП; II — изолированная ГТГ; III — избирательная Гипо α ЛП без ГЛП.

Сопутствующие ΦP (%) в трех группах больных ИБС с разными вариантами ДЛП: I- комбинированная ГЛП; II- изолированная ГТГ; III- избирательная Гипо α ЛП без ГЛП

ФР	Варианты ДЛП			
	I (n=24)	II (n=23)	III (n=31)	
Курение	8%	13%	32%	
$A\Gamma^*$	33%	48%	23%	
СД-2	8%	4%	Нет	
Ож	Нет	Нет	6%	

Примечание: * – артериальное давление у больных АГ, за исключением 2, не превышало 150/90 мм рт.ст.

выше. 10 пациентов из 78 перенесли 2 ИМ, из них 2- из I группы, 3- из II и 5 из III.

Данные о сопутствующих ДЛП ФР ИБС: курение, артериальная гипертензия (АГ), сахарный диабет 2 типа (СД-2), ожирение (Ож) представлены в таблице 2. Больше всего куривших сигареты оказалось в группе III (32%), АГ чаще отмечена в группе II, однако только у 2 больных АГ превышала пределы 150/90 мм рт.ст. Что касается СД-2 (который компенсировался диетой) и избыточной массы тела (МТ), то они были отмечены лишь у нескольких больных.

Обсуждение

Нет никаких сомнений в том, что у всех наблюдавшихся больных ИБС ДЛП имела первичный характер. У тех 5 больных СД-2 или Ож I-II (таблица 2), скорее можно судить о сочетанной патологии.

Все первично возникающие ДЛП с современных позиций рассматриваются как генетически обусловленные, но ни у кого из наблюдавшихся в этом исследовании больных не было характерного семейного анамнеза и таких "специфических" маркеров, как липоидные дуги роговицы, ксантелазмы или ксантомы. Эти генетические детерминанты в основном характерны для моногенных форм ГЛП, в особенности для семейных ГХС, при которых генетический дефект определяется в так называемых главных генах регуляции липидного обмена [5]. Однако большая часть случаев первичных ДЛП – это результат функционально значимых нуклеотидных полиморфизмов дезоксирибонуклеиновой кислоты (ДНК) во "второстепенных" генах, участвующих в регуляции липидного метаболизма. Эти видоизмененные гены называют генами, которые обусловливают подверженность данной патологии [2,3,5]. Это означает, что при определенных экзогенных или эндогенных условиях наличие подобных нуклеотидных полиморфизмов в цепочке ДНК конкретных генов может быть причиной того или иного варианта ДЛП [9].

Моногенные семейные формы ГХС ведут к IIa или IIb типам ГЛП. Такие больные в этом исследовании не участвовали. Для групп I и II в первую очередь была характерна ГТГ. По классификации, разработанной Европейским обществом по изучению атеросклероза [8], больные из группы I соот-

ветствуют смешанной или комбинированной ГЛП; больных из группы II следует отнести к изолированной ГТГ.

В указанной классификации дифференцируют также "ремнантную" ГЛП, которая ближе всего стоит к III фенотипу по классификации ВОЗ и по своим липидным характеристикам резко отличается у обследованных больных.

Нельзя объяснить ГЛП у пациентов и таким генетически обусловленным аутосомно-рецессивным дефектом, который связан с нарушением активности липопротеидной липазы крови. В этом случае ГТГ сопровождается высоким содержанием хиломикронов, которые у больных в плазме крови отсутствовали.

Совсем недавно идентифицирован еще один ген, участвующий в регуляции липидного метаболизма и обозначенный как USF (Upstream Stimulatory Factor). Этот ген был выделен при обследовании финских семей, в которых ИМ развивался в молодом возрасте на фоне комбинированной ГЛП [3]. Нельзя исключить того, что у некоторых больных виновником ГЛП является мутация или функционально значимые полиморфизмы в гене, кодирующем продукцию USF-фактора.

ГипоαЛП без ГЛП, обнаруженная у больных группы III, достаточно часто служит основой для развития атеросклероза и его осложнений [1]. На это указывают и другие работы [4]. Каковы причины этой патологии?

встречающаяся Давно известна редко Танжерская болезнь - аутосомно-рецессивное наследственное заболевание, для которого характерно очень низкое содержание ХС ЛВП, гиперплазия миндалин, гепато-лиенальный синдром и помутнение роговицы. Установлено, что в основе этой патологии лежит мутация в гене, контролирующем продукцию транспортного белка, переносящего свободный ХС (АВСА-1). Эта мутация локализуется в длинном плече 9-й хромосомы [7] и сопровождается нарушением обратного транспорта ХС с периферии в печень. Это приводит к накоплению ХС в тканях и прогрессированию атеросклероза. Описанная выше клиническая симптоматика у больных отсутствовала, в Северо-Западном регионе России такое заболевание не встречается. Вместе с тем следует иметь в виду,

что гетерозиготные носители рецессивных дефектных генов подобного типа или носители функционально значимых полиморфизмов в составе таких генов могут привести к низкому содержанию ЛВП (без вышеописанных других развернутых клинических проявлений) с вытекающими последствиями [3].

Еще одна возможная причина низкого уровня ЛВП – генетически обусловленное нарушение продукции лецитин-холестерин-ацилтрансферазы (ЛХАТ) — главного энзима, эстерифицирующего свободный ХС, без которого невозможно образование зрелых форм ЛВП. Описаны 30 мутаций контролирующего ЛХАТ гена в длинном плече 16-й хромосомы, что вызывает нарушение функции ЛХАТ [7]. Однако при этой патологии не только снижается содержание ЛВП, но нарастает уровень ТГ, развиваются анемия и протеинурия, возникает сильное помутнение роговицы. Эти проявления у больных отсутствовали.

Наконец, значительная часть случаев низкого содержания XC ЛВП, встречающихся в популяции, генетически детерминирована за счет дефекта продукции белков, вовлеченных в метаболизм ЛВП — дефицита СЕТР — белка, переносящего холестеринэстеры, либо зависит от мутаций гена, контролиру-

Литература

- 1. Липовецкий Б.М. О дислипидемических состояниях, свойственных разным формам ИБС и цереброваскулярных поражений. Кардиология 2007; 47(8): 8-11.
- Мандельштам М.Ю. Что дало изучение семейной гиперхолестеринемии для понимания генетики дислипидемий. Мед генетика 2003; 2(12): 509-19.
- Мандельштам М.Ю., Васильев В.Б. Моногенные болезни

 недооцененная угроза здоровью населения. Мед акад ж
 2008; 8(2): 3-13.
- 4. Никульчева Н.Г., Перова Н.В. Типы дислипопротеидемии в популяциях мужчин 40-59 лет Москвы и Ленинграда. В кн. Дислипопротеидемии и ишемическая болезнь сердца. Москва 1980; гл.10: 179-92.

ющего образование апопротеина A-I [7]. Очевидно, в основе большинства случаев Гипоо ЛП лежат нуклеотидные полиморфизмы именно этих генов.

Совместное исследование клиницистов и генетиков, работающих на молекулярном уровне, должно быть продолжено, чтобы успешно решать проблемы клинической генетики, в частности связанные с ДЛП.

Выводы

Атеросклероз и ИБС могут развиваться не только при ГХС, но и при других нарушениях метаболизма липидов — при ГТГ и при ДЛП, протекающих с дефицитом ЛВП.

В основе патогенеза первичных ДЛП лежат не только моногенные дефекты, но чаще всего — функционально значимые нуклеотидные полиморфизмы генов, участвующие в метаболизме липидов, способные вызывать многообразные варианты ДЛП при дополнительном взаимодействии с другими неблагоприятными внешними или внутренними факторами.

Дифференцированная оценка вариантов ДЛП в клинике необходима для адекватного подбора наиболее эффективной терапии ДЛП и вторичной профилактики осложнений ИБС и атеросклероза.

- Пузырев В.П. Генетика мультифакториальных заболеваний: между прошлым и будущим. Мед генетика 2003; 2(12): 498-508.
- Beaumont J, Carlson L, Cooper G, et al. Classification of hyperlipidemias and hyperlipoproteinemias. Bull Wld Hlth Org 1970; 43: 891-915.
- Betteridge D, Morrell J. Clinicians'guide to lipids and coronary heart disease. London 2003; 368 p.
- International Task Force for Prevention of CHD (EAS). Nutr Metab Cardiovasc Dis 1992; 2: 113-56.
- 9. Miserez A, Miller P, Barella S, et al. Sterol-regulatory element-binding protein-2 contributes to polygenic hypercholesterolemia. Atherosclerosis 2002; 164(1): 15-26.

Поступила 21/11-2008