УДК 617.731-007.23

НАШ ОПЫТ ОЦЕНКИ МОРФОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ДИСКА ЗРИТЕЛЬНОГО НЕРВА У БОЛЬНЫХ ГЛАУКОМОЙ

© В.А. Мачехин

Ключевые слова: диск зрительного нерва (ДЗН); глаукома; морфометрические параметры.

Цель – разработать компьютерную программу оценки морфометрических параметров диска зрительного нерва, основанную на индивидуальной площади ДЗН, и показать ее эффективность при обследовании больных на глаукому.

Материал и методы. Исследовано 396 глаз добровольцев без признаков глаукомы с рефракцией от +5Д до -8Д с остротой зрения 0,7-1,0 с коррекцией в возрасте 20-70 лет (мужчин и женщин поровну). Проводилось общепринятое офтальмологическое обследование, включая тонометрию, компьютерную периметрию и офтальмоскопию. Исследование параметров ДЗН проводилось на ретинотомографе HRT 3 в целом по диску и в 6 его секторах. Все глаза были распределены на 8 групп в зависимости от площади ДЗН (от 0,89 до 3,5 мм²).

Результаты и обсуждение. На основании проведенного статистического анализа были получены средние значения 11 параметров в целом по ДЗН и в 6 его секторах и определены их крайние значения в доверительном интервале 2,0; 2,58 и 3,2 σ , что и стало основой нашей программы. Была отмечена четкая зависимость большинства параметров от площади ДЗН, за исключением объема нейроретинального пояска и средней толщины слоя нервных волокон по краю диска, и показана на конкретных примерах необходимость учитывать это в практической деятельности.

Выводы. Предлагаемая компьютерная программа является ценным дополнением к программе HRT 3, позволяющим раньше выявить более тонкие изменения параметров ДЗН, что необходимо для выявления глаукомы в самых ее начальных стадиях.

Согласно современным представлениям о патогенезе первичной открытоугольной глаукомы, диагноз
глаукомы может быть установлен только при наличии
глаукомной оптической нейропатии (ГОН), которая
включает патологические изменения поля зрения и
диска зрительного нерва (ДЗН) [1]. Но если исследование поля зрения достигло значительного прогресса еще
в 1980-х гг. ХХ в., когда появились первые компьютерные периметры, позволившие исследовать центральное поле зрения, то математически точная оценка
параметров ДЗН стала возможной только в конце ХХ в.,
когда на рынке офтальмологического оборудования
появились Гейдельбергский лазерный сканирующий
ретинотомограф (НКТ) и оптический когерентный томограф (ОСТ) производства США.

Следует отметить, что появлению этой технологии предшествовали многочисленные работы по измерению площади экскавации и нейроретинального пояска (НРП) на увеличенных фотографиях ДЗН [2]. Знакомясь с этими работами 1870—1980-х гг. и сравнивая их данные с данными современных ретинотомографов, можно только удивляться их точности. Однако это была трудоемкая работа, которая носила чисто исследовательский характер и не была пригодна для широкого практического применения. Правда, попытку математической оценки ДЗН еще в конце 1960-х гг. сделал М.F. Armaly [3], предложивший рассчитывать показатель Э/Д (отношение диаметра экскавации к диаметру ДЗН), который используется практическими офтальмологами и до настоящего времени.

Конечно, офтальмоскопия, особенно гониобиомикроскопия ДЗН, остается обязательной в арсенале офтальмологов для осмотра живого диска, его сосудистых и дистрофических изменений в объемном изображении, но наш глаз все равно не может сравниться с современной аппаратурой, производящей расчеты на микронном уровне.

Работ, касающихся морфометрических исследований параметров ДЗН, много [4], и, казалось бы, не осталось темных пятен. Но есть один момент, на который имеются ссылки многих авторов [5–6], указывающих, что величина параметров зависит от величины ДЗН, но на практике это не учитывается. Г.Е. Манаенкова [7–8] впервые показала, что статистически достоверной зависимости параметров ДЗН от пола и возраста не имеется, однако наблюдается явная зависимость параметров ДЗН от его площади. Эта данные стали основой для наших дальнейших исследований.

Цель работы — создать компьютерную программу оценки морфометрических параметров ДЗН, основанную на индивидуальной площади ДЗН, и показать ее эффективность при обследовании больных на глаукому.

МАТЕРИАЛ И МЕТОДЫ

Исследовано 396 глаз сотрудников и пациентов без признаков глаукомы и других заболеваний глаз с рефракцией от +5,0 D до -8,0 D и зрением 0,7-1,0 с коррекцией. Возраст этой группы составил от 20 до 70 лет, мужчин и женщин поровну. Офтальмологическое обследование включало визометрию, тонометрию, иссле-

дование поля зрения, биомикроскопию переднего отдела глаза и офтальмоскопию.

Исследование морфометрических параметров ДЗН проводилось с помощью лазерного сканирующего ретинотомографа НRТ 3. Кроме площади ДЗН (disc area) и параметра Э/Д (lin. cup/disc), анализировали еще 10 параметров: площадь экскавации (cup area), площадь НРП (rim area), отношение площади экскавации к площади ДЗН (cup/disc area ratio), объем экскавации (cup vol.), объем НРП (rim vol.), среднюю (mean cup depth) и максимальную (max cup depth) глубину экскавации, среднюю толщину слоя нервных волокон (mean RNFL thickness) и площадь поперечного сечения нервных волокон (RNFL cross sect. area) по краю ДЗН, отношение объема экскавации к объему НРП (cup/rim vol. ratio)

Статистическая обработка материала проводилась с помощью компьютерной программы Excel 2003. Рассчитывалась средняя величина параметра в норме (Мср.), стандартное отклонение (σ) и крайние границы параметров в доверительных интервалах (ДИ) 2σ , 2,58 σ и 3,2 σ (табл. 1).

На основании этих данных была разработана компьютерная программа для всех указанных выше параметров в целом по диску и по 6 секторам: височный (–45°, +45°), верхневисочный (45–90°), верхненосовой

(90–135°), носовой (135–225°), нижненосовой (225–270°), нижневисочный (270–315°) (рис. 1).

При этом результаты нашей компьютерной программы наносились на цифровые данные отчетного протокола HRT 3 в виде цветовой окраски патологически измененных параметров. Желтым цветом обозначались параметры, величина которых отличалась от среднего значения нормы на 2 σ (пограничное состояние); красным цветом обозначались те параметры, величина которых отличалась от среднего значения нормы на 2,58 σ (мы рассматривали их как проявления начальной глаукомы); в синий цвет окрашивались те параметры, величина которых отличалась от среднего значения нормы на 3,2 σ (такие параметры характерны для выраженных стадий глаукомы).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Все обследованные глаза были разделены на 8 групп в зависимости от площади ДЗН. На начальных стадиях нашей работы мы разделяли нормальные глаза на 3 группы в зависимости от площади ДЗН, как это было принято в большинстве исследований: менее 1,5 мм², 1,5–2,5 мм² и более 2,5 мм². Однако в силу того, что крайние (верхние или нижние) границы нормы параметров ДЗН в соседних группах значительно отлича-

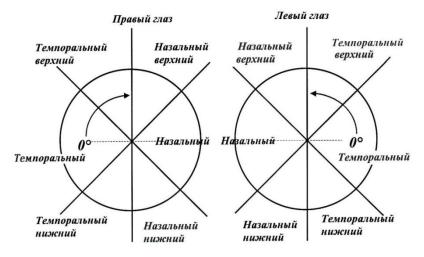
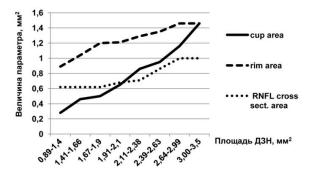
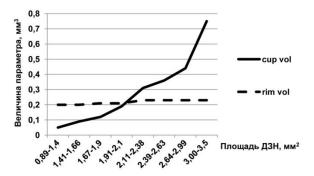



Рис. 1. Разделение ДЗН правого и левого глаза по секторам


Таблица 1

Величина параметра lin. cup/disc $(\Im/Д)$ в зависимости от площади ДЗН в различных доверительных интервалах (различие площади ДЗН между всеми соседними группами статистически достоверное (P < 0.001))

№ п/п	Площадь	ДЗН (мм ²)	Количество	Верхняя гран	Верхняя граница параметра lin. cup/disc в Д					
	Диапазон	$M_{\rm cp} \pm \sigma$	глаз	2σ	$2,58\sigma$	3,2σ				
1	0,89-1,40	$1,23 \pm 0,12$	39	0,45	0,49	0,53				
2	1,41-1,66	$1,55 \pm 0,08$	59	0,51	0,59	0,70				
3	1,67-1,90	$1,78 \pm 0,07$	80	0,54	0,63	0,71				
4	1,91-2,10	$2,00 \pm 0,06$	71	0,63	0,76	0,85				
5	2,11-2,38	$2,22 \pm 0,08$	68	0,64	0,76	0,85				
6	2,39-2,63	$2,49 \pm 0,06$	37	0,64	0,76	0,85				
7	2,64-2,99	$2,83 \pm 0,11$	23	0,70	0,83	0,93				
8	3,0-3,5	$3,15 \pm 0,12$	19	0,73	0,85	1,0				

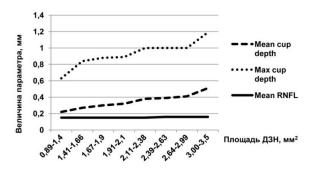
Рис. 2. Верхняя граница нормы сир area, нижняя граница нормы rim area и RNFL cross sect. area в зависимости от площади ДЗН

Рис. 3. Верхняя граница нормы cup vol и нижняя граница нормы rim vol в зависимости от площади ДЗН

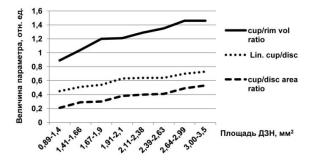
лись, мы разделили их сначала на 5 групп, а затем на 8 групп с диапазоном площади ДЗН в каждой группе от 0,25 до 0,3 мм 2 , за исключением самых крайних групп, которые встречались гораздо реже.

На рис. 2–5 представлена зависимость параметров ДЗН от его площади в целом по диску в доверительном интервале 2σ. При этом для глубины, площади и объема экскавации, а также для параметров отношения (cup/disc area ratio, lin. cup/disc, cup/rim vol. ratio) использовались верхние границы нормы, а для площади и объема НРП, средней толщины и площади поперечного сечения нервных волокон по краю диска (RNFL) – нижняя граница нормы.

Рис. 2 показывает, что с увеличением площади ДЗН увеличиваются все представленные параметры, однако наибольшее увеличение (почти в 5 раз) отмечено у площади экскавации (0,28 мм² в 1-й группе и 1,46 мм² в 8-й группе (табл. 2)), в то время как rim area и RNFL cross sect. area увеличились только в 1,6 раза. Такое же значительное увеличение при сравнении 1-й и 8-й групп наблюдается для объема экскавации (почти в 15 раз), а объем НРП остается практически одинаковым во всех группах (рис. 3). Независимость от площади ДЗН характерна и для средней толщины слоя нервных волокон по краю диска (рис. 4), тогда как средняя и максимальная глубина экскавации закономерно, но умеренно увеличиваются с увеличением площади ДЗН, также как и параметры соотношения экскавации ДЗН и НРП (рис. 5).


Остановимся более подробно на параметре lin. cup/disc, который практически является эквивалентом

параметра Э/Д. Компьютерная программа НRТ 3, которая анализирует в основном глаза с площадью ДЗН от 1,63 до 2,43 мм², указывает границы параметра lin. сир/disc в пределах 0,27–0,55. Однако наши данные (табл. 1) показывают, что верхняя граница, равная 0,55, укладывается только в группу глаз с площадью ДЗН от 0,89 до 1,90 мм² (1–3 группы), а для глаз с большей площадью диска (4–6 группы) верхняя граница нормы составляет уже 0,64, а для 7 и 8 групп – 0,7 и более. С другой стороны, в 1-й и 2-й группах верхняя граница нормы этого параметра не превышает 0,45–0,51, а величину 0,55 следует уже отнести к пограничному состоянию


В.В. Волков в своих работах [9] параметр Э/Д, равный 0,5–0,6, относит к начальной глаукоме, а 0,7–0,8 – ко второй стадии глаукомы. По нашим же данным, в 78 % случаев глаза имеют площадь ДЗН от 1,5 до 2,5 мм², и следовательно, верхняя граница нормы параметра lin. cup/disc составит 0,63–0,64, а пограничное состояние – до 0,75. Мы не знаем, каким методом расчета параметра Э/Д пользовался автор, но полагаем, что данные НRT в настоящее время являются более точными.

Точно также проводился анализ остальных параметров ДЗН и не только в целом по диску, но и в шести его секторах. В качестве примера приводим верхние границы нормы параметра Cup area (табл. 2) и нижние границы нормы параметра rim area (табл. 3) в доверительном интервале $2,0\sigma$.

Из табл. 2 видно, что для каждого сектора характерна своя топография. Так, в группе глаз с площадью ДЗН $0.89-1.40~{\rm km}^2$ наибольшая часть экскавации приходится на височный сектор $(0.18~{\rm km}^2)$, в верхневисоч-

Рис. 4. Верхняя граница нормы Mean cup depth и Max cup depth и нижняя граница нормы mean RNFL thickness в зависимости от площади ДЗН

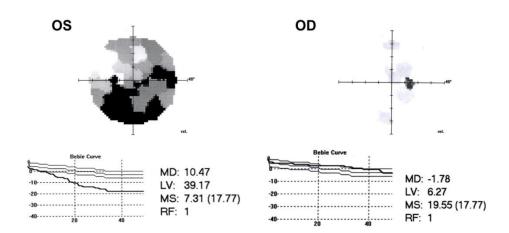

Рис. 5. Верхняя граница нормы параметров отношения экскавации и нейроретинального пояска в зависимости от площади ДЗН

Таблица 2 Верхние границы нормы параметра сир area в доверительном интервале 95 %

Площадь	В целом	Височный	Верхневисочный	Нижневисочный	Носовой	Верхненосовой	Нижненосовой
ДЗН	по диску	сектор	сектор	сектор	сектор	сектор	сектор
0,89-1,40	0,28	0,18	0,04	0,05	0,01	0,01	0,01
1,41-1,66	0,46	0,19	0,09	0,09	0,07	0,07	0,07
1,67-1,90	0,50	0,25	0,10	0,13	0,07	0,07	0,07
1,91-2,10	0,65	0,38	0,11	0,13	0,08	0,08	0,08
2,11-2,38	0,86	0,43	0,16	0,.16	0,15	0,12	0,12
2,39-2,63	0,95	0,43	0,16	0,16	0,15	0,12	0,12
2,64-2,99	1,16	0,48	0,24	0,22	0,21	0,15	0,12
3,0-3,5	1,46	0,59	0,24	0,24	0,34	0,22	0,13

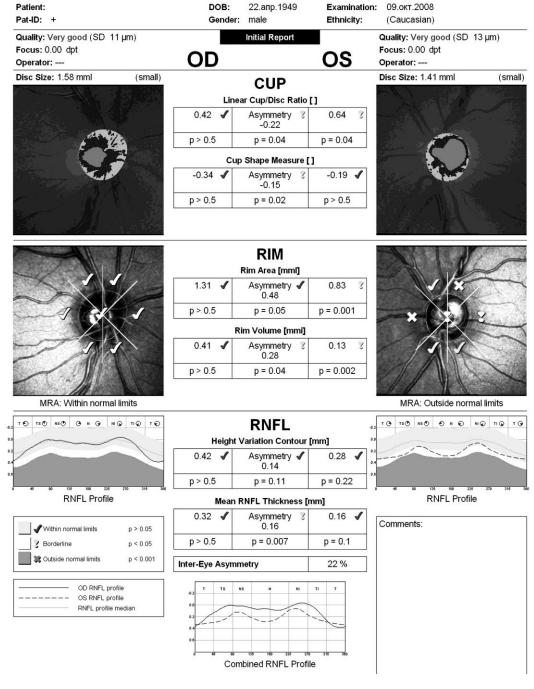
. Таблица 3 Нижние границы нормы параметра rim area в доверительном интервале 95 %

Площадь	В целом	Височный	Верхневисочный	Нижневисочный	Носовой	Верхненосовой	Нижненосовой
ДЗН	по диску	сектор	сектор	сектор	сектор	сектор	сектор
0,89-1,40	0,89	0,12	0,12	0,12	0,27	0,14	0,14
1,41-1,66	1,04	0,12	0,12	0,12	0,27	0.14	0,14
1,67-1,90	1,20	0,12	0,12	0,12	0,33	0,16	0,16
1,91-2,10	1,21	0,12	0,12	0,12	0,34	0,16	0,17
2,11-2,38	1,29	0,12	0,13	0,13	0,34	0,16	0,17
2,39–2,63	1,35	0,12	0,13	0,13	0,34	0,19	0.20
2,64-2,99	1,46	0,14	0,13	0,13	0,35	0,19	0,20
3,0-3,5	1,46	0,19	0,14	0,14	0,35	0,19	0,20

Рис. 6. Компьютерная периметрия (Topcon) показывает выраженное снижение общей чувствительности сетчатки в левом глазу и сливные скотомы в нижних отделах центрального поля зрения

ном и нижневисочном секторах она значительно меньше ((0,04–0,05 мм 2) и минимальна во всех секторах носовой половины (0,01 мм 2). Однако по мере увеличения площади ДЗН это различие (за исключением височного сектора) постепенно уменьшается, начиная с площади ДЗН более 2,1 мм 2 . При этом величина сир агеа заметно и статистически достоверно увеличивается (это имеет место при различии параметра в соседних группах на 0,03 мм 2 и более).

Что касается параметра rim area (табл. 3), то в целом по диску видна его выраженная зависимость от площади ДЗН, однако по секторам эта зависимость


выражена очень слабо, за исключением височного и секторов диска в носовой его половине, в которых наблюдается явное различие между группами с маленькой и большой площадью диска.

Далее приводим методику анализа параметров ДЗН у больного глаукомой с помощью программы HRT 3 и нашей компьютерной программы, учитывающей конкретную площадь ДЗН.

Пациент П., 59 лет, обратился с жалобами на сужение поля зрения в правом глазу в течение трех месяцев (в анамнезе глаукома у матери). При обследовании: Vis OD = 1,0; $B\Gamma \Pi = 25$ мм рт. ст.; Vis OS = 1,0; $B\Gamma \Pi = 25$ мм рт. ст.; Vis OS = 1,0; $B\Gamma \Pi = 1$

= 35 мм рт. ст. Объективно ОU: без особенностей, имеются единичные псевдоэксфолиации по зрачковому краю радужки, при гониоскопии угол передней камеры открыт, средней ширины, пигментация трабекулы I степени. Офтальмоскопически в левом глазу отмечается более широкая физиологическая экскавация. В правом глазу на периметре Торсоп поле зрения нормальное, в левом глазу выявлено заметное снижение общей чувствительности сетчатки (МD на 10,47 dB меньше возрастной нормы), выраженное отклонение от нормы кривой Бебье и сливные скотомы в нижней половине и в верхненосовом секторе поля зрения (рис. 6).

В главном отчетном протоколе HRT 3 (рис. 7) сверху представлены топографические изображения ДЗН обоих глаз с четкой границей по краю диска. Светлые периферические отделы диска представляют нейрореминальный поясок (НРП), который на цветном снимке отчетного протокола HRT имеет зеленый цвет. Внутрь от него в виде темного кольца представлен наклонный ход волокон НРП (на цветном рисунке он имеет синий цвет). В центре ДЗН в светло-сером фоне показана экскавация диска, которая при цветном изображении всегда имеет красный цвет. Видна явная асимметрия в величине экскавации. Несмотря на то, что площадь ДЗН

Рис. 7. Главный отчетный протокол HRT 3 показывает явную асимметрию площади экскавации в обоих глазах и патологические отклонения MRA в левом глазу (объяснение в тексте)

OD

Parameters	global	normal	range	p-value	temporal	tmp/sup	tmp/inf	nasal	nsl/sup	nsl/inf
disc area [mm²]	1.58	1.63-	2.43	21	0.38	0.19	0.22	0.40	0.20	0.19
cup area [mm²]	0.28	0.11 -	0.68	>0.5	0.18	0.02	0.06	0.01	0.00	0.01
rim area [mm²]	1.31	1.31 -	1.96	>0.5	0.20	0.17	0.16	0.38	0.20	0.19
cup/disc area	0.17	0.07-	0.30	>0.5	0.47	0.10	0.27	0.03	0.01	0.03
rim/disc area	0.83	0.70-	0.93	>0.5	0.53	0.90	0.73	0.97	0.99	0.97
cup volume [mm²]	0.07	-0.01 -	0.18	>0.5	0.05	0.01	0.01	0.00	0.00	0.00
rim volume [mm²]	0.41	0.30-	0.61	>0.5	0.03	0.05	0.05	0.13	0.08	0.07
mean cup depth [mm]	0.20	0.10-	0.27	>0.5	0.31	0.18	0.24	0.09	0.05	0.11
maximum cup depth [mm]	0.76	0.32-	0.76	0.17	0.78	0.76	0.74	0.51	0.34	0.43
height variation contour [mm]	0.42	0.31 -	0.49	>0.5	0.25	0.13	0.27	0.05	0.04	0.07
cup shape measure	-0.34	-0.28 -	-0.15	>0.5	-0.15	-0.34	-0.28	-0.44	-0.30	-0.30
mean RNFL thickness [mm]	0.32	0.20-	0.32	>0.5	0.12	0.39	0.34	0.36	0.41	0.45
RNFL cross sectional area [mm ²]	1.42	0.99-	1.66	>0.5	0.14	0.21	0.20	0.40	0.23	0.25
linear cup/disc	0.42	0.27-	0.55	>0.5	-	-	_	-	-	-
maximum contour elevation [mm]	-0.04	-0.21 -	-0.04	0.21	-	2	-	2	-	-
maximum contour depression [mm]	0.38	0.17-	0.39	0.38	-	2	4	2	-	-
CLM temporal-superior [mm]	0.26	0.14-	0.27	>0.5	-	2	L	2	-	-
CLM temporal-inferior [mm]	0.22	0.13-	0.29	>0.5	-	~	2	-	-	-
average variability (SO) [mm]	16			-	2	-	2	2	-	-
reference height [mm]	429	-		-	-	2	-	_	-	-
FSM discriminant function value	3.53	U.		23	-	-	-	=	-	-
RB discriminant function value	2.66			-	-	-	-	-	-	-
modified ISNT rule fulfilled	no	-		-	-	-	-	-	-	-
cup/rim volume	0.2				1.7	0.2	0.2	0	0	0

OS

Parameters	global	normal	range	p-value	temporal	tmp/sup	tmp/inf	nasal	nsl/sup	nsl/inf
disc area [mm²]	1.41	1.63-	2.43	21	0.34	0.19	0.19	0.33	0.18	0.18
cup area [mm²]	0.59	0.11 -	0.68	0.06	0.22	0.12	0.07	0.11	0.04	0.02
rim area [mm²]	0.83	1.31 -	1.96	0.001	0.12	0.07	0.12	0.22	0.14	0.16
cup/disc area	0.41	0.07-	0.30	0.006	0.65	0.65	0.35	0.34	0.24	0.11
rim/disc area	0.59	0.70-	0.93	>0.5	0.35	0.35	0.65	0.66	0.76	0.89
cup volume [mm ²]	0.16	-0.01 -	0.18	0.08	0.07	0.05	0.02	0.01	0.01	0.00
rim volume [mm²]	0.13	0.30-	0.61	0.002	0.01	0.01	0.02	0.03	0.02	0.04
mean cup depth [mm]	0.26	0.10-	0.27	0.13	0.33	0.40	0.25	0.16	0.18	0.12
maximum cup depth [mm]	0.70	0.32-	0.76	0.21	0.69	0.76	0.62	0.36	0.56	0.43
height variation contour [mm]	0.28	0.31 -	0.49	0.22	0.05	0.15	0.12	0.19	0.10	0.10
cup shape measure	-0.19	-0.28 -	-0.15	>0.5	-0.10	0.01	-0.12	-0.08	-0.21	-0.30
mean RNFL thickness [mm]	0.16	0.20-	0.32	0.10	0.07	0.15	0.15	0.15	0.24	0.29
RNFL cross sectional area [mm ²]	0.67	0.99-	1.66	0.16	0.07	0.08	0.08	0.15	0.13	0.16
linear cup/disc	0.64	0.27-	0.55	0.04	21	-	=	-	-	_
maximum contour elevation [mm]	0.06	-0.21 -	-0.04	0.01	-	-		-	-	-
maximum contour depression [mm]	0.34	0.17-	0.39	>0.5	-	-	-	-	-	-
CLM temporal-superior [mm]	0.08	0.14-	0.27	0.10	-	-	-	-	-	-
CLM temporal-inferior [mm]	0.09	0.13-	0.29	0.20	-	-	-	-	-	-
average variability (SO) [mm]	18	-	-	-	-	-	-	=	-	-
reference height [mm]	384	-	-	-	-	-	-	-	-	-
FSM discriminant function value	-0.54	-	-	-	-	-	-	-	-	-
RB discriminant function value	-0.16	-	-	-	-	-	8	-	-	-
modified ISNT rule fulfilled	yes	-	-	-		-	-	-	-	-
cup/rim volume	1.2				7	5	2.5	0.3	0.5	0

подозрение на глаукому
начальная стадия глаукомы
II-III стадия глаукомы

Рис. 8. Наша программа показывает патологические изменения многих параметров ДЗН с различной глубиной их поражения (объяснение в тексте)

в левом глазу меньше $(1,41~\text{mm}^2)$, чем в правом $(1,58~\text{mm}^2)$, площадь экскавации в левом глазу в 2 раза больше, чем в правом $(0,59~\text{и}~0,28~\text{mm}^2~\text{соответственно})$ (рис. 5), и связано это с выраженным истончением НРП по всей окружности диска особенно в верхневисочном его секторе.

Ниже представлены отраженные изображения ДЗН правого и левого глаза с символами в центре диска и в шести его секторах, дающих информацию о состоянии НРП и его соотношениях с экскавацией, — параметр,

названный регрессионным анализом Moorfield (MRA). Галочка, которая всегда имеет зеленый цвет, указывает на нормальное состояние этого параметра. Символ в виде перевернутой пешки (желтый цвет) свидетельствует о пограничном состоянии параметра и, наконец, крестик (всегда красного цвета) говорит о патологическом состоянии MRA. В правом глазу все символы указывают на нормальное состояние нейроретинального пояска и его соотношение с площадью экскавации. В левом глазу патологические изменения видны в но-

совом и верхневисочном секторах (крестик), пограничное состояние – в височном секторе и в целом по диску, в остальных секторах патологии не выявлено.

Профиль слоя нервных волокон по краю диска (RNFL), показанный ниже картинок, в левом глазу заметно ниже, чем в правом (пунктирная линия).

Однако главный отчетный протокол HRT дает только общее представление о наличии или отсутствии патологии. Между тем, для наблюдения в динамике необходима точная математическая оценка различных параметров ДЗН, что могла бы дать цифровая таблица отчетного протокола HRT. К сожалению, она анализирует параметры только в целом по диску без оценки возможных изменений по секторам (за исключением MRA) и без учета индивидуальных размеров ДЗН, от которого зависит правильная оценка исследуемых параметров [10].

Обратимся к цифровой таблице параметров ДЗН правого глаза (рис. 8). Первый столбик показывает значение параметров ДЗН в целом по диску, 2-й и 3-й столбики - диапазон параметров в норме, 4-й - достоверность отличия данного параметра от нормы. Поскольку площадь диска этого глаза (1,58 мм²) близка к диапазону нормы по данным HRT 3 $(1,63-2,43 \text{ мм}^2)$, то все параметры ДЗН находятся в пределах нормы. Но в височном секторе этого глаза наша программа показала пограничное состояние объема экскавации и максимальной глубины экскавации. Следует отметить, что единичные пограничные отклонения параметров ДЗН (особенно связанные с экскавацией) не относят к патологии. К тому же положительное значение дискриминантных функций (FSM и RB), расположенных в нижней части таблицы, свидетельствует об отсутствии глаукомы.

Теперь проанализируем цифровую таблицу параметров ДЗН левого глаза с цветной кодировкой пораженных параметров. Компьютерная программа HRT 3 показала статистически достоверное патологическое отклонение только трех параметров в целом по диску: rim area (P = 0.001), cup/disc area ratio (P = 0.006) и rim vol (P = 0,002). Наша программа выявила выраженные изменения этих параметров не только в целом по диску, но и во всех других секторах, хотя все-таки наиболее глубокие поражения наблюдаются в верхневисочном секторе диска. Не исключено, что именно эти изменения одновременно с уменьшением объема НРП (rim vol) в верхненосовом секторе ДЗН являются причиной грубых сливных скотом в нижней половине поля зрения в левом глазу. Что касается параметра mean RNFL, т. е. средней толщины слоя нервных волокон по краю диска, то пограничное его состояние совпадает полностью как по программе HRT 3, так и по нашей программе (в верхневисочном и носовом секторах). Следует также обратить внимание на следующий факт: площадь ДЗН в левом глазу у данного пациента, равная 1,41 мм², находится ниже нормального диапазона, анализируемого программой HRT 3 (1,63-2,43), поэтому параметр сир area у данного пациента, равный 0,59 мм², отнесен программой HRT к нормальному, т. е. находится в диапазоне нормы (0,11-0,68), а по нашей программе он соответствует выраженным стадиям глаукомы. Это же касается объема экскавации (cup vol) и

средней, и максимальной глубины экскавации, которые по данным HRT 3 укладываются в границы нормы, а по нашей программе соответствуют выраженным стадиям глаукомы. Значительные отклонения от нормы показал предложенный нами параметр сир/гіт vol (самая нижняя строка рис. 8), свидетельствующий о нарушении нормальной топографии во всех секторах диска. В то же время небольшая отрицательная величина параметров FSM и RB хотя и указывает на глаукому, но не совсем соответствует степени выраженности клинической картины. На основании проведенного исследования пациенту был поставлен диагноз открытоугольной II с глаукомы в левом глазу, назначен траватан и азопт и было рекомендовано явиться на контрольное обследование через 2 недели.

ЗАКЛЮЧЕНИЕ

В течение 7 лет мы используем лазерный сканирующий ретинотомограф фирмы Heidelberg Engineering Company (Германия) сначала модели HRT 2, а с 2008 г. – HRT 3. Нам импонирует это оборудование, поскольку оно сохранило привычные для офтальмологов второй половины XX в. традиционные подходы к анализу ДЗН, но только на более точном, микронном уровне.

Нисколько не умоляя достоинств иллюстративного отчета программного обеспечения HRT 3, мы считаем, что наша компьютерная программа [10], учитывающая индивидуальную площадь ДЗН, является ценным дополнением к ней, позволяющим более полно и раньше выявить патологически измененные параметры ДЗН и глубину их поражения, и может быть рекомендована для широкого внедрения в клиническую практику.

ЛИТЕРАТУРА

- Terminology and Guidness for Glaucoma. 3-rd ed. European Glaucoma Society. 2008. URL://www.eugs-org. Загл. с экрана.
- Волков В.В. Глаукома при псевдонормальном давлении. М., 2001. С. 275.
- Armaly M.F., Sayergh R.E. The cup/disc ratio. The finding of tonometry and tonography in the normal eye // Arch. Ophthalmol. 1969. V. 82. P. 191-196
- Куроедов А.В., Городничий В.В. Компьютерная ретинотомография (HRT): диагностика, динамика, достоверность. М., 2007. С. 205.
- Hermann M.M., Theofylactopoulos I., Bangard N. [et al.] Optic nerve head morfometry in healthy adalts using confocal laser scanning tomography // Br. J. Ophthalmol. 2004. V. 88. № 6. P. 410-416.
- Nakamura H., Maeda T., Suzuki Y. [et al.] Scanning laser tomography to evaluate optic disc of normal eye // Jpn. J. Ophthalmol. 1999. V. 43. № 5. P. 410-414.
- Манаенкова Г.Е. Оценка параметров диска зрительного нерва по данным лазерного ретинотомографа HRT II в ранней диагностике глауком: автореф. дис. ... канд. мед. наук. М., 2006.
- Мачехин В.А., Манаенкова Г.Е., Бондаренко О.А. Зависимость параметров диска зрительного нерва от его площади (по данным НВТ II) // Глаукома: теория, тенденции, технологии: сб. ст. М., 2006. С. 235-240.
- Волков В.В. Значимость различных факторов риска в частоте возникновения открытоугольной глаукомы // Глаукома и другие проблемы офтальмологии: сб. науч. тр. Тамбов, 2005. С. 9-16.
- Мачехии В.А., Бондаренко О.А., Савилова Е.Л. Свидетельство о государственной регистрации программы для ЭВМ № 20086114495 «Оптимизация анализа данных ретинотомографического исследования». Зарегистрировано в реестре программ для ЭВМ 18 сентября 2008 г.

Поступила в редакцию 19 октября 2012 г.

Machekhin V.A. OUR EXPERIENCE IN EVALUATION OF MORPHOMETRIC PARAMETERS OF EYE NERVE DISC OF GLAUCOMA PATIENTS

Goal – to develop a computer program, based on individual optic disc area, for assessment of morphometric parameters of optic disc, and to show its efficacy during patient testing for glaucoma

Materials and methods: We examined 396 eyes of volunteers without signs of glaucoma with refraction from +5D to -8D and visual acuity 0.7–1.0 with correction, aged 20–70 years (men and women ratio 1:1). We conducted traditional ophthalmic testing, including tonometry, computer perimetry and ophthalmoscopy. We examined optic disc parameters on HRT 3, assessing the disc in whole and in its 6 sectors. All eyes were divided into 8 groups depending on optic disc area (from 0.89 to 3.5 mm²).

Results and discussion: The statistic analysis gave us mean values of 11 parameters of optic disc in whole and in its 6 sectors, and the extreme values were established in the trusted interval 2.0; 2.58 and 3.2 sigma, which became the basis of our program. We noticed a precise dependency of most parameters on optic disc area, excluding neuro-retinal rim volume and mean nerve fiber layer thickness along the disc edge, and showed the necessity to take this fact into consideration in clinical practice.

Conclusion: The suggested computer program is a valuable addition to HRT 3 that allows revealing more subtle optic disc changes at an earlier stage, which is necessary for glaucoma diagnosis at its earliest stage.

Key words: disc of eye nerve; glaucoma; morphometric parameters