И.М. Давидович¹, О.В. Афонасков², Е.В. Поротикова²

МУЖЧИНЫ МОЛОДОГО ВОЗРАСТА С ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ: СВЯЗЬ МЕЖДУ СОСТОЯНИЕМ НЕЙРОДИНАМИКИ, ВАРИАБЕЛЬНОСТЬЮ РИТМА СЕРДЦА И КРОВОТОКОМ В СРЕДНЕМОЗГОВОЙ АРТЕРИИ

Дальневосточный государственный медицинский университет¹, ул. Муравьева-Амурского, 35, тел.: 8-(4212)-32-63-93, e-mail: nauka@mail.fesmu.ru; 301-й Окружной военный клинический госпиталь², 680000, ул. Серышева, 1, г. Хабаровск

Артериальная гипертензия (АГ) до настоящего времени остается одной из самых распространенных форм сердечно-сосудистой патологии, причин смертности и инвалидизации населения в России [10]. Прогрессирование АГ в значительной степени связано с функциональными и структурными нарушениями со стороны органов-мишеней. При этом поражение органов-мишеней должно оцениваться и процессе лечения пациентов с АГ [4]. Однако разработка эффективных мероприятий по профилактике и лечению АГ невозможна без знания различных конкретных звеньев патогенеза их повреждения. Среди органов-мишеней при АГ важное место занимают различные варианты поражения головного мозга. Кровообращение в головном мозге нельзя рассматривать изолированно от кровообращения всего организма в целом. В неразрывной связи с мозговым кровотоком находятся такие параметры, как системное артериальное давление, общее периферическое сосудистое сопротивление, пульсовое давление. Кровоснабжение мозга характеризуется наличием оптимального режима, обеспечивающего в процессе жизнедеятельности непрерывное и своевременное пополнение его энергетических затрат [2]. Это достигается последовательным включением ряда факторов, приводящих в действие механизмы саморегуляции мозгового кровообращения. Под ауторегуляцией мозгового кровотока принято понимать совокупность механизмов, которые поддерживают практически постоянную скорость кровотока в головном мозге, и обеспечение его кислородом независимо от изменений системной гемодинамики [3]. Функциональные и структурные изменения внутримозговых артерий, возникающие у больных гипертонической болезнью (ГБ), могут предрасполагать к развитию инсульта или преходящего нарушения мозгового кровообращения и быть причиной разнообразных неврологических и психических расстройств [2]. В связи с этим оценка состояния ауторегуляции тонуса среднемозговой артерии у людей молодого возраста с ГБ и ее связь с некоторыми параметрами нейродинамики представляет безусловный интерес.

Цель работы заключалась в оценке состояния уровня функциональной подвижности нервных процессов и взаимосвязи его с показателями ауторегуляции кровотока в среднемозговой артерии и вариабельностью ритма сердца у мужчин молодого возраста с гипертонической болезнью I-II стадии, ранее не лечившихся или получавших лечение нерегулярно.

Резюме

Изучен уровень подвижности (УФП) нервных процессов, вариабельность ритма сердца (ВРС) и ауторегуляция тонуса среднемозговой артерии у 49 мужчин молодого возраста с гипертонической болезнью. Установлена взаимосвязь между снижениями показателей УФП, повышенной активностью симпатической нервной системы и нарушенной ауторегуляцией тонуса среднемозговой артерии.

Ключевые слова: артериальная гипертензия, когнитивные функции, вариабельность ритма сердца.

I.M. Davidovich, O.V. Afonaskov, E.V. Porotikova

THE YOUNG MEN WITH ARTERIAL HYPERTENSION: CONNECTION BETWEEN NEURODYNAMIC STATE, MIDDLE CEREBRAL ARTERY FLOW AND HEART RHYTHM VARIABILITY

Far Eastern state medical university; 301 District Military Clinical Hospital, Khabarovsk

Summary

The nervous process' mobility (NPM), heart rhythm variability and middle cerebral artery tonus autoregulation were studied in 49 young men with arterial hypertension. During the investigation there were established a correlation between the decrease of NPM, increased sympathetic system activity and the alteration of middle cerebral artery tonus autoregulation.

 $\it Key\ words$: arterial hypertension, cognitive functions, cardiac rhythm variability.

Материалы и методы

В исследование был включен 71 мужчина молодого возраста (средний возраст $39,1\pm1,9$ г.), все офицеры по контракту Сухопутных войск Дальневосточного военного округа. Пациенты были разделены на две группы. Основную (1) группу составили 49 мужчин с $A\Gamma$, средний возраст $39,2\pm1,3$ г., длительность $A\Gamma - 4,9\pm0,4$ г. Γ Б I стадии была у 22 (44,9%) чел., Γ Б II стадии — у 27 (55,1%) больных. $A\Gamma$ 1 степени — у 22 чел. (44,9%), 2 степени — у 27 (55,1%) пациентов. Контрольную группу составили 22 офицера Сухопутных войск ДВО с нормальным $A\Pi$, средний возраст $38,1\pm1,5$ г. Обязательным условием включения в исследование было личное информированное согласие пациента.

Уровень функциональной подвижности нервных процессов у мужчин молодого возраста с ГБ и нормальным АД

Показатели УФПНП (120 сигналов)	Мужчины молодого возраста		
	с ГБ (n=47)	с нормальным АД (n=16)	
Затрачено времени (мс)	67,3±0,8	72,1±7,8	
Минимальная экспозиция (мс)	230,8±7,4	220,2±14,0	
Средняя экспозиция (мс)	417,2±7,0*	388,2±12,7	
Время выхода на экспозицию (мс)	36,5±2,5	28,5±4,3	
Кол-во ошибок	25,2±1,1	31,4±4,9	
Пропущено сигналов	15,8±1,1*	5,6±0,9	

Примечание. * — достоверность различий (p<0,0001) по сравнению с лицами с нормальным AД.

Одной из нейродинамических характеристик человека является сила и подвижность нервных процессов, протекающих в коре головного мозга. Критериями исключения пациентов по оценке состояния уровня подвижности нервных процессов были: возраст старше 45 лет; наличие в анамнезе заболеваний центральной нервной системы, любые эпизоды нарушения мозгового кровообращения, травмы и контузии головного мозга; наличие хронической патологии (ИБС, хронической сердечной недостаточности, злокачественных нарушений ритма сердца, сахарного диабета, бронхиальной астмы, хронических заболеваний печени в стадии декомпенсации); злоупотребление алкоголем; симптоматический характер АГ, который выявлялся с помощью комплексного обследования по общепринятой схеме; наличие при УЗДГ экстракраниальных артерий с их стенотическим поражением; отказ пациента от начала или продолжения исследования.

Оценку уровня функциональной подвижности нервных процессов (УФП) проводили на программно-аппаратном комплексе «Status PF» в режиме «обратная связь» [5]. Для переработки информации предлагалось 120 раздражителей (цвет). Длительность экспозиции тестирующего сигнала менялась автоматически в зависимости от характера ответных реакций пациента. Диапазон колебаний экспозиции сигнала находился в пределах 200-900 мс. Последовательность предъявления сигналов носила случайный характер при сохранении равного представительства каждого вида. Регистрировали минимальное значение экспозиции сигнала, время выхода на минимальную экспозицию, среднюю экспозицию, количество пропущенных сигналов и количество допущенных ошибок. Определяли состояние показателей вариабельности ритма сердца (ВРС) исходно и в ответ на умственную нагрузку (тест УФП) [1, 7, 9]. Состояние ауторегуляции среднемозговой артерии оценивали методом дуплексного сканирования на аппарате «Sonoline SI-450» («Siemens», Германия), оснащенном линейным датчиком 7,5 МГц. В спектральном допплеровском режиме определяли усредненную по времени максимальную скорость кровотока (ТАМХ) с последующим проведением функциональных проб: тест миогенной направленности — оценка показателей ТАМХ до и через 3 мин после сублингвального приема 0,25 мг нитроглицерина. Индекс реактивности (ИР) рассчитывали как отношение исходных показателей

Показатели вегетативной регуляции ритма сердца в состоянии покоя и при проведении теста УФП у мужчин молодого возраста с ГБ и нормальным АД

	Мужчины молодого возраста					
Показатель	с ГБ (n=47)	с нормальным АД (n=16)				
Показатели ВРС (в состоянии покоя)						
ЧСС (уд./мин)	80,2±3,1	72,9±2,4				
ИН	251,0±23,5	135,6±25,6*				
ИВР	349,9±56,4	202,8±32,7				
ВПР	8,9±0,8	5,6±0,6**				
Показатели ВРС (после умственной нагрузки — тест УФН)						
ЧСС (уд./мин)	84,7±1,4	80,3±2,3				
ИН	299,3±34,1	180,3±34,9				
ИВР	391,3±39,3	251,2±45,3**				
ВПР	12,2±1,6	6,6±0,8**				

Примечания. Достоверность различий между лицами с ГБ и нормальным АД; * — (p<0,01); ** — p<0,05.

ТАМХ к значениям ТАМХ после пробы. Гиперкапническую пробу проводили с задержкой дыхания на 30 с, с оценкой указанных показателей через 3 мин (в период максимальной дилатации). ИР — отношение ТАМХ после пробы к исходным показателям ТАМХ. Классификацию типов реакций кровотока на основании параметров ИР считали: положительной (нормальной) при ИР= 1,1-1,14; усиленной — при ИР>1,14; отрицательной — при ИР=0,9-1,1 и парадоксальной — при ИР<0,9 [6]. Суточное мониторирование АД (СМАД) проводили автоматической амбулаторной системой на аппарате «Bplab» («Петр Телегин»). Полученные параметры анализировали отдельно в дневное (д) и ночное (н) время в соответствии с принятыми критериями [8]. Статистический анализ проводили с помощью пакета прикладных программ Statistica 6.0 (StatSoft, USA, 2001) с использованием критериев Манна-Уитни и точного критерия Фишера. Для выявления степени взаимосвязи между изучаемыми показателями рассчитывали коэффициент корреляции Спирмена (r) и отношение шансов (ОШ). Достоверными считали различия при р<0,05.

Результаты и обсуждение

Оценка уровня функциональной подвижности нервных процессов (УФП) показала, что у мужчин молодого возраста с АГ, в отличие от лиц с нормальным давлением, снижена способность головного мозга удерживать длительное, концентрированное возбуждение. Это проявлялось в достоверном удлинении времени средней экспозиции и почти 3-кратном увеличении числа пропущенных сигналов по сравнению с нормотониками (табл. 1). Определение ОШ показало, что в молодом возрасте наличие АГ способствовало увеличению числа пропущенных сигналов в тесте УФН в 3,68 раза (95% ДИ: 1,56-8,59), по сравнению с лицами с нормальным АД. Степень АГ не оказывала существенного влияния на нарушения процессов нейродинамики в тесте УФП, поскольку удлинение времени средней экспозиции и число пропущенных сигналов были практически одинаковыми как при 1 степени, так и при 2 степени АГ. Видимо, на данный процесс отрицательное влияние оказывало само Таблица 3 Таблица 4

Типы реакций кровотока (%) на основании параметров индекса реактивности (ИР) при оценке ауторегуляции тонуса среднемозговой артерии в пробе с нитроглицерином у мужчин молодого возраста с ГБ и нормальным АД

Типы кровотока	Пациенты с ГБ (n=49)		Пациенты с нормальным АД (n=22)	
	справа	слева	справа	слева
Положительный	30,6 p=0,031	38,7 p=0,047	63,6	63,6
Отрицательный	59,1 p=0,01	53,2 p=0,016	13,6	18,2
Парадоксальный	6,1	6,1	0	0
Усиленный	4,1 p=0,019	2,0 p=0,023	22,7	18,2

Примечание. р — достоверность различий по критерию Фишера между пациентами с ГБ и лицами с нормальным АД на соответствующей стороне.

повышенное АД. Подтверждением данному предположению служило наличие прямой корреляционной связи между большим числом параметров СМАД и количеством пропущенных сигналов в тесте УФП. При этом на увеличение числа пропущенных сигналов оказывали влияние средние и «нагрузочные» параметры САД, как в дневное, так и в ночное время, и ДАД преимущественно в ночное время.

При оценке ВРС было установлено (табл. 2), что у мужчин молодого возраста с ГБ, по сравнению с лицами с нормальным АД, имела место повышенная активность СНС, на что указывала тахикардия в состоянии покоя и достоверно больший, чем у нормотоников, индекс напряжения (ИН) регуляторных систем — на 85,9%, и вегетативный показатель ритма (ВПР) — на 58,9%. После проведения пробы с умственной нагрузкой, теста УФП у лиц с нормальным АД произошел рост ИН на 32,9% и индекса вегетативной регуляции (ИВР) — на 23,9%. У мужчин с ГБ имела место перенапряжение СНС, поскольку на фоне ее исходно повышенной активности прирост ИН составил всего 19,2% и ИВР — 11,8%, по сравнению с аналогичными показателями у нормотоников. Это же подтверждалось наличием у них достоверно большего (на 84,8%) ВПР, чем у нормотоников, а также наличием положительной корреляционной связи между ИН после нагрузки и временем выхода на экспозицию (ИH/BBЭ=+0.34; p<0.05) и ИВР/BBЭ=+0.34 (p<0.05). При этом ВПР у пациентов с ГБ по отношению к исходному состоянию вырос на 37,1%, в то время как у лиц с нормальным АД данный показатель увеличился только на 17,9%. Имелась прямая зависимость между ВПР после нагрузки и количеством ошибок в тесте УФП - ВПР/ KO=+0,51 (p<0,05). Следовательно, у мужчин молодого возраста с ГБ неадекватно высокая активность СНС могла оказывать отрицательное влияние на некоторые параметры нейродинамики, в частности УФП.

Определение ауторегуляции тонуса среднемозговой артерии показало, что у пациентов с ГБ в отличие от нормотоников преобладал отрицательный тип реакций кровотока, и достоверно снижалось число лиц с положительным ИР в обеих функциональных пробах при оценке ТАМХ (табл. 3 и 4). Нарушение ауторегуляции тонуса среднемозговой артерии было в большей степени обусловлено повышением диастолического давления,

Типы реакций кровотока (%) на основании параметров индекса реактивности (ИР) при оценке ауторегуляции тонуса среднемозговой артерии в гиперкапнической пробе у мужчин молодого возраста с ГБ и нормальным АД

Типы кровотока	Пациенты с ГБ (n=49)		Пациенты с нормальным АД (n=22)	
	справа	слева	справа	слева
Положительный	24,5 p=0,001	30,6 p=0,001	68,2	68,2
Отрицательный	69,4 p=0,001	55,1 p=0,001	18,2	18,2
Парадоксальный	2,0	12,3	0	0
Усиленный	4,1	2	13,6	13,6

Примечание. р — достоверность различий по критерию Фишера между пациентами с $\Gamma \delta$ и лицами с нормальным АД на соответствующей стороне.

поскольку между ИР в пробе с нитроглицерином и показателями ДАД имела место отрицательная средней силы корреляционная связь (срДАДн/ИРпр.=-0,31, p<0,05; срДАД/ИРлв=-0,36, p<0,05; срДАДл/ИРлв=-0,42, p<0,02; срДАДн/ИРлв=-0,43, p<0,02). В свою очередь установлено, что снижение ИР среднемозговой артерии в тесте миогенной направленности способствовало увеличению количества ошибок в тесте УФП, на что указывала отрицательная корреляционная связь между данными показателями (ИРн/КО УФП = -0,37, p<0,05).

В настоящее время АГ считается в качестве одного из ведущих факторов риска различных вариантов поражения головного мозга, наиболее опасные из которых острые или хронические нарушения мозгового кровообращения [2]. Вместе с тем, легкие и умеренные когнитивные отклонения сейчас рассматриваются как предикторы будущих тяжелых когнитивных расстройств [11-13]. Существует множество различных механизмов повреждающего влияния повышенного АД на головной мозг как орган-мишень. В нашем случае у мужчин молодого возраста с ГБ, офицеров Сухопутных войск, относящихся к разряду лиц «напряженных профессий», одним из возможных механизмов проявления когнитивной дисфункции, кроме непосредственно стойкого повышение АД, имеет значение сопряженная с ним высокая активность СНС и нарушенная ауторегуляция тонуса среднемозговой артерии.

Выводы

- 1. У мужчин молодого возраста, офицеров Сухопутных войск с ГБ I-II стадии, в отличие от лиц с нормальным АД, имело место снижение уровня функциональной подвижности нервных процессов.
- 2. Снижение функциональной подвижности нервных процессов у данной категории пациентов с ГБ могло быть обусловлено перенапряжением СНС и нарушенной ауторегуляций тонуса среднемозговой артерии.

Литература

- 1. Баевский Р.М., Кириллов О.И., Клецкин С.З. Математический анализ изменений сердечного ритма при стрессе. М., 1984. С. 142-149.
- 2. Верещагин Н. В., Суслина З.А., Максимова М.Ю. Артериальная гипертония и цереброваскулярная патоло-

гия: современный взгляд на проблему // Кардиология. - 2004. - N23. - C. 4-8.

- 3. Гераскина К.А., Суслина З.А., Фонякин А.В. Реактивность сосудов головного мозга у больных дисциркуляторной энцефалопатией на фоне артериальной гипертензии и риск развития гипоперфузии мозга // Тер. архив. 2001. №2. С. 43-48.
- 4. Диагностика и лечение артериальной гипертензии: рек. Рос. мед. об-ва по артериальной гипертонии и Всерос. науч. об-ва кардиологов // Кардиоваск. тер. и проф. Прил. 1. 2008. №4. 32 с.
- 5. Иванов В.И., Литвинова Н.А., Березина М.Г. Автоматизированный комплекс для индивидуальной оценки индивидуально-типологических свойств и функционального состояния организма человека «Статус ПФ» // Валеология. 2004. №4. С. 70-73.
- 6. Лелюк В.Г., Лелюк С.Э. Ультразвуковая ангиология: монография // Реальное Время. М., 2003. С. 100-113.
- 7. Петрова М.М., Шнайдер Н.А., Барбараш О.Л. Когнитивные осложнения артериальной гипертонии. Красноярск, 2008. 115 с.
- 8. Рогоза А.Н., Ощепкова Е.В. Современные неинвазивные методы измерения артериального давления для диагностики артериальной гипертонии и оценки эффективности лечения. Ч. 3: Суточное мониторирование АД (СМАД) // Атмосфера. Кардиология. 2008. №4. С. 15-22.
- 9. Смакотина С.А., Трубникова О.А., Ананько Ю.А. и др. Гипертоническая болезнь состояние нейродина-

- мики у пациентов молодого и зрелого возраста // Артериальная гипертензия. 2007. №2. С. 145-147.
- 10. Шальнова С.А., Деев А.Г., Оганов Р.Г. Факторы, влияющие на смертность от сердечно-сосудистых заболеваний в российской популяции // Кардиоваск. тер. и проф. 2005. №1. С. 4-9.
- 11. Consoli D., Di Carlo A., Inzitari D. Subcortical ischaemic changes in young hypertensive patients: frequency, effect on cognitive performance and relationship with markers of endothelial and haemostatic activation. European Journal of Neurology. 2007. Vol. 14(11). P. 1222-1229.
- 12. Lande M.B., Kaezorwski J.M., Auinger P. et al. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States // J Pediatr. 2003. -Vol. 143. P. 699-700.
- 13. Singh-Manoux A., Marmot M. High blood pressure was associated with cognitive function in middle-age in the Whitehall II study //J. Clin. Epidemiol. 2005. Vol. 58. P. 1308-1315.

Координаты для связи с авторами: Давидович Илья Михайлович — доктор мед. наук, профессор кафедры факультетской терапии ДВГМУ, тел.: 8-(4212)-38-38-06, e-mail: ilyadavid@rambler. ru; Афонасков Олег Владимирович — канд. мед. наук, ассистент кафедры кардиологии и профилактической медицины ДВГМУ; Поротикова Елена Владимировна — врач-ординатор кардиологического отделения 301-го Окружного военного госпиталя.

