ЛАЗЕРНАЯ ДОППЛЕРОВСКАЯ ФЛОУМЕТРИЯ В ОЦЕНКЕ МИКРОЦИРКУЛЯЦИИ У ЗДОРОВЫХ ЛЮДЕЙ И БОЛЬНЫХ АРТЕРИАЛЬНОЙ ГИПЕРТОНИЕЙ

С.Г. Абрамович, А.В. Машанская

(Иркутский государственный институт усовершенствования врачей, ректор – д.м.н., проф. В.В. Шпрах, кафедра физиотерапии и курортологии, зав. – д.м.н., проф. С.Г. Абрамович)

Резюме. Методом лазерной допплеровской флоуметрии изучены показатели микроциркуляции у здоровых людей и больных артериальной гипертонией. У здоровых людей наблюдается сбалансированность механизмов регуляции микрокровотока с преобладанием активных модуляторов. Для больных артериальной гипертонией характерно снижение вазомоторной активности микрососудов с повышением тонуса резистивного звена микроциркуляторного русла на фоне активизации пассивных механизмов модуляции кровотока.

Ключевые слова: артериальная гипертония, лазерная допплеровская флоуметрия, микроциркуляция.

LASER DOPPLER FLOWMETRY IN ESTIMATION OF MICROCIRCULATION IN HEALTHY PEOPLE AND PATIENTS WITH ARTERIAL HYPERTENSION

S.G. Abramovich, A.V. Mashanskaya (Irkutsk State Institute for Medical Advanced Studies)

Summary. The indices of microcirculation in healthy people and patients with arterial hypertension have been studied by the method of laser Doppler flowmetry. In healthy people a balance of regulation mechanisms of micro blood flow with prevalence of active modulators is observed. For the patients with arterial hypertension a decrease of vasomotor activity of microvessels with increase in tonus of resistive chain of microcirculatory bed on the background of passive mechanisms activization of blood flow modulation is typical.

Key words: arterial hypertension, laser Doppler flowmetry, microcirculation.

В последние годы проблема изучения микроциркуляции (МЦ) при различных патологических состояниях выдвинулась в разряд перспективных направлений медицинской науки. Смещение акцента исследований из эксперимента в клинику позволило расшифровать многие механизмы патогенеза различных заболеваний, адаптировать данные фундаментальных исследований к потребностям практической медицины. Однако следует подчеркнуть, что большинство методов исследования МЦ не позволяют выявить особенности регуляции конечного кровотока. В настоящее время в клинической практике широко используется новый неинвазивный метод исследования МЦ – лазерная допплеровская флоуметрия (ЛДФ), позволяющая не только оценить общий уровень периферической перфузии, но и выявить механизмы модуляции микрогемодинамики [3,5].

В многочисленных публикациях, касающихся изучения МЦ у больных артериальной гипертонией (АГ), было доказано, что нарушения микрокровотока являются ключевым звеном повышения периферического сосудистого сопротивления, артериального давления (АД) и имеют прямую корреляцию со стадией заболевания и возрастом [2,4]. В то же время, недостаточно работ, в которых изучались нормативы параметров ЛДФ тканевого кровотока у здоровых людей, анализировалась ритмическая структура микрокровотока в норме и патологии. В связи с этим, целью данного исследования явилось изучение особенностей амплитудно-частотного спектра микрогемодинамики здоровых людей и больных АГ методом ЛДФ.

Материалы и методы

Всего обследовано 60 человек, которых мы разделили на 2 группы. Первая (основная) группа была представлена 32 больными эссенциальной АГ 2-ой стадии и 2-ой степени (18 женщин и 14 мужчин) с высоким риском развития осложнений в возрасте от 23 до 69 лет, средний возраст 55,7±2,9 года. Длительность заболевания колебалась от 4 до 22 лет. Во вторую группу (сравнения) были включены 28 здоровых людей в возрасте от 18 до 65 лет (средний возраст 51,2±3,3 года).

Для изучения МЦ использовался метод ЛДФ, основанный на оптическом зондировании тканей монохроматическим излучением и анализе частотного спектра сигнала, отражённого от движущихся эритроцитов.

ЛДФ осуществляли лазерным анализатором капиллярного кровотока «ЛАКК-02» с компьютерным программным обеспечением LDF 2.2.509_(2008-07-15)_setup.exe (производство ООО НПП «ЛАЗМА», Москва, регистрационное удостоверение МЗ РФ № 29/03020703/5555-03 от 11.09.2003 г.).

Исследование проводили в утреннее время суток при одинаковой температуре в помещении около 21-24°С, испытуемые во время исследования находились в положении сидя. Перед исследованием больные в течение 15 мин. пребывали в спокойном состоянии, не курили и не принимали пищу или напитки, изменяющие состояние МЦ. Головка оптического зонда фиксировалась на наружной поверхности левого предплечья на 4 см выше шиловидного отростка; рука располагалась на уровне сердца. Выбор этой области обусловлен тем, что она в меньшей степени подвержена воздействиям окружающей среды, бедна артериоло-венулярными анастомозами, поэтому в большей степени отражает кровоток в нутритивном русле [1]. Длительность записи составляла 4 мин.

Оценивали следующие показатели МЦ:

М (перф. ед.) – величина среднего потока крови в интервалах времени регистрации или среднеарифметическое значение показателя МЦ;

СКО (уровень флакса, перф. ед.) – средние колебания перфузии относительно среднего значения потока крови М, характеризующие временную изменчивость перфузии; данный показатель отражает среднюю модуляцию кровотока во всех частотных диапазонах.

Кв (%) – коэффициент вариации, который характеризует соотношение между изменчивостью перфузии (флаксом) и средней перфузией (М) в зондируемом участке тканей.

С помощью расчётных параметров М, СКО и Кв можно интегрально оценить состояние МЦ. Более детальный анализ функционирования конечного кровотока должен осуществляться исследованием структуры ритмов колебаний перфузии крови [5]. Анализ амплитудно-частотного спектра (АЧС) колебаний кожного кровотока производился на основе использования математического аппарата Фурье-преобразования и специальной компьютерной программы цифровой фильтрации регистрируемого ЛДФ-сигнала. Изучались следующие показатели амплитудно-частотного спектра: очень низкочастотные (эндотелиальные, VLF),

Таблица 1 Амплитудно-частотные характеристики осцилляций кожного кровотока [8,9]

	Название ритмов колебаний тканевого кровотока	Частотный диапазон	Физиологическое значение
Активные механизмы регуляции микрокровотока	Эндотелиальные колебания (very low frequency, VLF)	0,0095-0,02 Гц [11]	Обусловлены функционированием эндотелия, а именно выбросом вазодилататора оксида азота (NO).
	Вазомоторные колебания, LF	0,02-0,052 Гц [10]	Связаны с работой вазомоторов (гладкомышечных клеток в прекапиллярном звене резистивных сосудов). С их помощью имеется возможность оценивать периферическое сопротивление артериол.
Пассивные механизмы регуляции микрокровотока	Дыхательные волны (респираторно-связанные колебания, high frequency, HF)	0,15-0,4 Гц [7]	Связаны с венулярным звеном. Обусловлены динамикой венозного давления при лёгочной механической активности, присасывающим действием «дыхательного насоса».
	Пульсовые волны (сердечные волны, cardio frequency, CF)	0,8-1,6 Гц [5]	Обусловлены изменением скорости движения эритроцитов в микрососудах, вызываемым перепадами систолического и диастолического давления. Амплитуда отражает тонус резистивных сосудов.

низкочастотные (вазомоторные, LF), высокочастотные (дыхательные, HF1 и HF2) и пульсовые (кардиальные, CF1 и CF2) колебания кожного кровотока (табл. 1). Необходимо отметить, что низкочастотные колебания включают в свой частотный диапазон как нейрогенные колебания (0,02-0,05 Гц), обусловленные низкочастотным симпатическим адренергическим влиянием на гладкую мускулатуру артериол и артериолярных участков артерио-венулярных анастомозов, так и миогенные колебания (0,06-0,2 Гц), контролирующие мышечный тонус волокон прекапилляров [12,13].

Рассчитывался индекс эффективности МЦ (ИЭМ) – интегральный показатель, характеризующий соотношение механизмов активной и пассивной модуляции кровотока, который вычисляется по формуле:

^ ИЭМ= A(VLF)+A(LF) / A(HF)+A(ĈF), ′ где A – амплитуды ритмов VLF, LF, HF и CF (табл. 1).

Статистическую обработку результатов проводили путём вычисления среднего значения исследуемых величин (М), средней ошибки (m) для каждого показателя. Оценка значимости различий между данными, полученными в исследуемых группах, проводилась с использованием t-критерия Стьюдента.

Результаты и обсуждение

Как показали результаты проведённого исследования у здоровых людей и больных АГ показатель перфузии М, СКО и Кв не имели статистически значимых отличий (табл. 2).

Наиболее полное представление о функционировании механизмов контроля МЦ русла даёт анализ ритмических составляющих АЧС ЛДФ-граммы. Ритмическая структура флаксмоций, выявляемая с помощью амплитудно-частотного анализа, есть результат суперпозиции различных эндотелиальных, вазомоторных, дыхательных, сердечных и других косвенных влияний на состояние МЦ [6]. Результаты исследований показали значимое снижение амплитуды эндотелиальных (VLF) колебаний в среднем на 41,2% (p<0,05) относительно значений амплитуд VLF у испытуемых группы сравнения. Известно, что колебания с частотой около 0,01 Гц обусловлены функционированием эндотелия (выбросом основного вазодилататора NO) [11]. Снижение амплитуды колебаний VLF у больных АГ свидетельствует о морфо-функциональной структурной перестройке микрососудов, дисфункциональных нарушениях, сопровождающихся нарушением эндотелий зависимой вазолилатации.

Наряду со снижением амплитуды VLF у больных АГ наблюдалось значимое снижение амплитуд вазомоторных (LF) колебаний в среднем на 35,7% (р<0,02) по сравнению со значениями этого показателя у испытуемых группы сравнения. Снижение амплитуды LF у больных АГ свидетельствует о повышении периферического сопротивления сосудов (вазоконстрикции) и, следовательно, об уменьшении нутритивного кровотока. LF-колебания отображают функциональную активность миоцитов в области прекапиллярного звена МЦ русла и выраженность влияний со стороны адренергических волокон симпатической нервной системы на гладкомышечные клетки микрососудистого русла [5,12]. Происхождение вазомоций в этом диапазоне связывают с

локальными песмекерами внутри гладких мышечных клеток, осцилляциями концентрации ионов Ca²⁺ через мембраны клеток [13]. В работе H. Schmid-Schonbein и соавт. [12] прекапиллярную вазорелаксацию связывают с «гистамино» похожей субстанцией.

Tаблица 2 Показатели микроциркуляции у здоровых людей и больных артериальной гипертонией (M+m)

Показате	ли / Групп	ы обследования	3доровые	Больные АГ		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	от отентення полити	лица (n=28)	(n=32)		
М, перф.	ед.		3,7±0,5	3,5±0,2		
CKO (ypo	вень флак	са), перф. ед.	0,6±0,08	0,7±0,1		
Кв, %			16,9±3,2	17,2±1,8		
Максимальная амплитуда колебаний (А max), перф. ед.	_	VLF	1,7±0,3	1,0±0,2*		
ампл іах), г	частот	LF	1,4±0,2	0,9±0,1**		
ная і І (А m ед.		HF1	0,6±0,1	0,5±0,05		
Максимальная колебаний (А r eд.	ед. Диапазон	HF2	0,3±0,09	0,2±0,02		
акси олеб		CF1	0,18±0,05	0,3±0,01*		
≥ ₹		CF2	0.09+0.02	0,15±0,01**		
MEN			2,2±0,2	1,7±0,1**		

Примечание: значимость различий: * - p < 0,05; ** - p < 0,02.

Как показали наши исследования, у больных АГ на фоне снижения функционирования активных механизмов контроля перфузии, происходило повышение пассивных, создающих продольные колебания кровотока, выражающиеся в изменении объёма крови в сосуде. Особенно это коснулось амплитуды пульсовой волны (CF). Показатели CF1 и CF2 оказались выше аналогичных показателей здоровых людей более чем на 60,0%. Амплитуда пульсовой волны, приносящейся в МЦ русло со стороны артерий, является параметром, который изменяется в зависимости от состояния тонуса резистивных сосудов. Увеличение амплитуды пульсовой волны означает увеличение притока крови в МЦ русло. Подобные изменения наблюдаются у пожилых больных вследствие снижения эластичности сосудистой стенки, а также у больных с АГ [5].

Было доказано, что у представителей сравниваемых групп отсутствовали статистически значимые различия амплитуды дыхательной волны, которая обусловлена

распространением в микрососуды со стороны путей оттока крови волн перепадов давления в венозной части кровеносного русла и преимущественно связана с дыхательными экскурсиями грудной клетки. Местом локализации дыхательных волн в системе МЦ являются посткапиллярные и магистральные ёмкостные микрососуды (венулы). Чаще всего увеличение амплитуды дыхательной волны указывает на снижение МЦ давления. Ухудшение оттока крови из МЦ русла может сопровождаться увеличением объёма крови в венулярном звене, что приводит к росту амплитуды дыхательной волны в ЛДФ-грамме [5]. В нашем исследовании у большинства испытуемых (независимо от групповой принадлежности) не было обнаружено значительных размахов амплитуды дыхательной волны, что свидетельствует об отсутствии выраженных застойных явлениях в МЦ русле. Эти данные согласуются с результатами исследования А.А. Федорович и соавт. [7], в котором показано, что для больных с АГ не всегда характерна корреляционная взаимосвязь исходных значений амплитуды (дыхательного) венулярного ритма с уровнем АД.

ЛИТЕРАТУРА

- 1. *Бранько В.В.*, *Богданова Э.А.*, *Камшилина Л.С. и др.* Метод лазерной доплеровской флоуметрии в кардиологии: Пособие для врачей. М., 1999. 48 с.
- 2. Казначеев В.П., Дзизинский А.А. Клиническая патология транскапиллярного обмена. М., 1975. 238 с.
- 3. *Козлов В.И.*, *Корси Л.В.*, *Соколов В.Г.* Лазерная допплеровская флоуметрия и анализ коллективных процессов в системе микроциркуляции // Физиология человека. 1998. Т. 24. № 6. С.112.
- 4. Козлов В.И., Азизов Г.А. Механизм модуляции тканевого кровотока и его изменение при гипертонической болезни // Регионарное кровообращение и микроциркуляция. 2003. Т. 2. № 4 (8). С.53-59.
- 5. Лазерная доплеровская флоуметрия микроциркуляции крови: Руководство для врачей / Под ред. А.И. Крупаткина, В.В. Сидорова. М.: Медицина, 2005. 256 с.
- 6.Метод лазерной доплеровской флоуметрии: Пособие для врачей / Под ред. Козлов В.И., Мач Э.С., Литвин Ф.Б., Терман О.А., Сидоров В.В. М., 1999. 48 с.
- 7. Федорович А.А., Рогоза А.Н., Гориева Ш.Б., Павлова Т.С. Взаимосвязь функции венулярного отдела сосудистого русла с суточным ритмом артериального давления в норме и при артериальной гипертонии // Кардиологический вестник. 2008. Т. 3 (15). № 2. С.21-31.

Таким образом, у больных АГ выявлено значительное перераспределение характеристик АЧС в виде снижения активных механизмов регуляции кровотока и повышения в сторону пассивных. Такие изменения обусловили существенное снижение ИЭМ на 77,6% у больных АГ (p<0,02) по сравнению с испытуемыми 1 группы.

Метод лазерной допплеровской флоуметрии является неинвазивным, высокоинформативным методом функциональной диагностики состояния микроциркуляции. У здоровых людей наблюдается сбалансированность механизмов регуляции микрокровотока с преобладанием активных модуляторов. Для АГ характерно угнетение механизмов саморегуляции микрокровотока: нарушается функциональное состояние эндотелия, снижается вазомоторная активность микроссосудов с повышением тонуса резистивного звена МЦ русла на фоне активизации пассивных механизмов модуляции кровотока, включающих флюктуации скорости потока эритроцитов, синхронизированные, преимущественно, с сердечным ритмом.

- 8. Чуян Е.Н., Раваева М.Ю., Трибрат Н.С. Низкоинтенсивное электромагнитное излучение миллиметрового диапазона: влияние на процессы микроциркуляции // Физика живого. -2008. -T.16. №1. -C.82-90.
- 9. Чуян Е.Н., Трібрат Н.С., Ананченко М.Н. Індивідуально-типологічниі особливості показників мікроциркуляціі // Вчені записки Таврійського національного університету ім В.І. Вернадського. Серия "Біологія, хімія". 2008. Т.21 (60). № 3. С.190-203.
- 10. Bollinger F., Yanar A., Hofmann U., Franzeck U.K. Is high frequency flux motion due to respiration or to vazomotion activity? // Progress Appl. Microcirculation. Basel: Karger. 1993. Vol. 20. P.52.
- 11. Kvandal P., Stefanovsra A., Veber M., et al. Regulation of human cunaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandins // Microvascular Research. 2003. Vol. 65. P.160-171.
- 12. Schmid-Schonbein H., Ziege S., Grebe R., et al. Synergetic Interpretation of Patterned Vasomotor Activity in Microvascular Perfusion: Descrete Effects of Miogenic and Neurogenic Vasoconstriction as well as Arterial and Venous Pressure Fluctuation // Int. J. Micror. 1997. Vol. 17. P.346-359.
- 13 *Stefanovska A., Bracic M.* Physics of the human cardiovascular system // Contemporary Physics. 1999. Vol. 40. № 1. P.31-35.

Информация об авторах: 664079, Иркутск, Юбилейный, 100, Иркутский государственный институт усовершенствования врачей, кафедра физиотерапии и курортологии, Абрамович Станислав Григорьевич – зав. кафедрой, профессор, д.м.н., тел. (3952) 390630, e-mail: stan_als@inbox.ru; Машанская Александра Валерьевна – ассистент кафедры, к.м.н., e-mail: ale-mashanskaya@yandex.ru

© РАТОВСКАЯ О.Ю., НИКУЛИНА С.Ю., КУСКАЕВ А.П. - 2010

ПРИМЕНЕНИЕ ПРОБЫ С ФИЗИЧЕСКОЙ НАГРУЗКОЙ И СУТОЧНОГО МОНИТОРИРОВАНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ В ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКЕ ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНИ И НЕЙРОЦИРКУЛЯТОРНОЙ ДИСТОНИИ

О.Ю. Ратовская, С.Ю. Никулина, А.П. Кускаев

(Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, ректор – д.м.н., проф. И.П. Артюхов; кафедра внутренних болезней №1, зав. – д.м.н., проф. В.А. Шульман; кафедра кардиологии и функциональной диагностики, зав. – д.м.н., проф. Г.В. Матюшин)

Резюме. В статье представлены дифференциально-диагностические критерии гипертонической болезни I стадии и нейроциркуляторной дистонии по гипертоническому типу у лиц мужского пола в возрасте от 18 до 25 лет, при помощи пробы с физической нагрузкой (велоэргометрии) и суточного мониторирования артериального давления

Ключевые слова: гипертоническая болезнь, нейроциркуляторная дистония, дифференциальная диагностика, велоэргометрия, суточное мониторирование артериального давления.