#### **Scientific Review**



УДК 616.58:258-47

РУДНОВ В.А.

Уральская государственная медицинская академия, г. Екатеринбург, Россия

### КЛИНИЧЕСКАЯ ЗНАЧИМОСТЬ И ВОЗМОЖНЫЕ ПУТИ КОРРЕКЦИИ ГИПЕРГЛИКЕМИИ ПРИ КРИТИЧЕСКИХ СОСТОЯНИЯХ

**Резюме.** В обзоре представлены критерии, механизмы развития, патофизиологические последствия стрессорной гипергликемии — одного из проявлений метаболической дисфункции, осложняющих течение различных критических состояний, включая сепсис, механическую, термическую и операционную травму, инфаркт миокарда и повреждения головного мозга.

**Ключевые слова:** стрессорная гипергликемия, критические состояния, инфаркт миокарда, инсульт, травма.

Термин «стрессорная гипергликемия» (СГ) появился в клинической практике с конца XIX века, когда начали регистрировать повышение уровня глюкозы в крови при тяжелых ранениях и инфекциях у лиц, не страдавших прежде сахарным диабетом (СД) [1].

По некоторым оценкам, около половины пациентов отделений реанимации и интенсивной терапии (ОРИТ) имеют повышенный уровень глюкозы в крови.

Установленная взаимосвязь тяжести состояния и повышения содержания глюкозы в крови длительное время рассматривалась в качестве адаптивной реакции на повреждение, не требующей неотложной коррекции [1]. В качестве потенциально позитивных эффектов гипергликемии отмечали необходимость повышенного энергетического обеспечения клеток, участвующих в воспалительной реакции, и плазмоэкспандерное действие, обусловленное гиперосмолярностью при наличии гиповолемии [3].

Между тем в последнее время стали накапливаться сведения, обосновывающие необходимость пересмотра устоявшейся позиции [18—22, 31, 32].

В связи с этим целью настоящей публикации явился анализ современного состояния проблемы, обсуждение целесообразности и путей устранения стрессорной гипергликемии у пациентов ОРИТ.

#### Критерии СГ

Диагностические критерии СГ варьируют в достаточно широких пределах.

Согласно мнению большинства специалистов под стресс-индуцированной гипергликемией понимают увеличение содержания глюкозы в крови больных или пострадавших (без указаний на наличие СД в анамнезе) более 110—200 мг/дл (6,1—11,0 ммоль/л) [1, 25, 28, 30, 36 и др.].

#### Механизмы СГ при критических состояниях

Углубление наших представлений о сути нарушений метаболизма при критических состояниях дало основание считать гипергликемию одним из проявлений синдрома гиперметаболизма, характерного для критических состояний различной природы, обусловленного повышением уровня контринсулярных гормонов, активацией липолиза, протеолиза и цикла Кори. Причиной изменения пострецепторного сигнала в клетках скелетной мускулатуры служит ингибиция пируватдегидрогеназы — ключевого фермента, являющегося посредником между путем гликолиза Эмбдена — Мейергофа и циклом трикарбоновых кислот. Снижение активности пируватдегидрогеназы ведет к неполному окислению глюкозы, накоплению пирувата и стимуляции глюконеогенеза [3].

Важную роль в стабилизации гипергликемии в условиях стрессорного ответа на повреждение играет резистентность к инсулину клеток скелетной мускулатуры, гепатоцитов, жировой ткани в сочетании с относительной инсулиновой недостаточностью, связанной с ограниченной компенсаторной способностью β-клеток поджелудочной железы [1]. Развитие устойчивости клеток к действию инсулина, в свою очередь, связано с сопутствующей стрессу «медиаторной бурей» — выбросом в системную циркуляцию контринсулярных гормонов, катехоламинов и провоспалительных цитокинов. Основные механизмы, способствующие формированию СГ, представлены в табл. 1.

При разных критических состояниях доминируют различные механизмы, реализующие СГ. Так,

<sup>©</sup> Руднов В.А., 2013

<sup>© «</sup>Медицина неотложных состояний», 2013

<sup>©</sup> Заславский А.Ю., 2013

при механической травме главной причиной является повышение продукции глюкозы в печени, а не нарушение ее утилизации тканями [2, 3, 5]. При тяжелых ожогах на начальных этапах глюкагон — ведущий фактор, способствующий поддержанию гипергликемии. В дальнейшем, несмотря на повышение уровня инсулина в крови, сохраняющаяся длительное время СГ (более 3 нед.) в большей степени связана с инсулинорезистентностью [2, 25]. У септических больных, а также после травматичных оперативных вмешательств наиболее существенное значение в запуске СГ имеют провоспалительные цитокины [7].

#### Гипергликемия, связанная с особенностями терапии

Усилению и поддержанию инициированной эндогенными медиаторами гипергликемии может способствовать ряд лекарственных средств, широко используемых в практике интенсивной терапии. В первую очередь это относится к эпинефрину/норэпинефрину и другим симпатомиметикам в связи со стимуляцией ими  $\alpha$ -адренорецепторов, глюкокортикостероидам ( $\Gamma$ K), некоторым цитостатикам (циклоспорин, такролимус) [9–11].

Совместное введение катехоламинов и ГК в 3 раза чаще сопровождается развитием гипергликемии [7].

Гипергликемия может быть и результатом некорректно проводимого парентерального (ПП) или энтерального питания, она развивалась у 50 % пациентов, получавших при полном парентеральном питании декстрозу, вводимую со скоростью более 4 мг/кг/мин [12].

Адекватность анестезиологической защиты и выбор ее метода также влияют на способность организма к поддержанию нормогликемии после хирургической травмы. Эпидуральная анестезия в большей степени, чем ингаляционная, предотвращает риск развития СГ в послеоперационном периоде [13]. Анестезия изофлюраном одновременно нарушает усвоение глюкозы и повышает ее продукцию. В то же время внутривенная анестезия с высокими дозами опиоидов в значительной мере ослабляет гипергликемический ответ на операционную травму [14, 16]. Действие операционного стресса может пролонгироваться в условиях отсутствия адекватной аналгезии и нейровегетативной стабилизации на этапе ОРИТ.

Из экспериментальных исследований известно, что высвобождению глюкозы в системную циркуляцию способствует интенсивное волемическое возмещение, а выраженность резистентности к инсулину определяется длительностью операции и может сохраняться в течение нескольких недель [3].

## Патофизиологические следствия гипергликемии

Гипергликемия в сочетании с инсулинорезистентностью может оказывать значимое дополнительное повреждающее воздействие, способствуя усугублению органной дисфункции по крайней мере посредством 3 механизмов:

- снижения кислородного транспорта и нарушения водно-электролитного гомеостаза из-за стимуляции диуреза и дополнительных потерь жидкости:
- стимуляции катаболизма структурных белков в силу недостатка поступления глюкозы в клетку;
- гликозилирования белковых молекул и снижения их функциональной активности.

## Влияние гипергликемии на исход критических состояний

К настоящему времени накопились доказательства бесспорной клинической значимости гипергликемии при следующих нозологиях и клинических ситуациях.

**Инсульт и черепно-мозговая травма.** В ряде экспериментальных и клинических исследований получены доказательства влияния СГ на увеличение зоны ишемического повреждения головного мозга и ухудшение прогноза [17—19].

Статистически значимая корреляционная взаимосвязь обнаружена между содержанием глюкозы, фотореакцией зрачков и величиной внутричерепного давления в первые 24 ч после черепно-мозговой травмы (ЧМТ) [21]. А у пациентов с тяжелой ЧМТ уровень глюкозы, превышающий 200 мг/дл, ассоциировался с неблагоприятным исходом. У оперированных больных содержание глюкозы в крови являлось независимым предиктором исхода на протяжении 6 мес. Негативные последствия СГ связывают с повышением проницаемости гематоэнцефалического барьера, развитием ацидоза, которые могли способствовать расширению области инфаркта.

Аналогичные выводы о влиянии СГ были сделаны и для популяции больных с инсультом. Наряду со снижением выживаемости (через 30 дней, 1 год и 6 лет) показано отрицательное влияние на функциональный исход у выживших больных, увеличение сроков госпитализации и материальных затрат [10, 13].

Инфаркт миокарда. Метаанализ, включивший в себя более 6000 пациентов с СГ на фоне инфаркта миокарда (ИМ), развившейся у 71 % лиц без СД, продемонстрировал ее негативное воздействие и при данной патологии [20]. Больные с уровнем глюкозы более 110 мг/дл имели риск смерти в 3,9 раза выше, чем пациенты с более низкими значениями. Причем если содержание глюкозы в крови находилось в диапазоне 146—181 мг/дл, существенно возрастал риск развития тяжелой сердечной недостаточности или кардиогенного шока.

В качестве объяснений установленного неблагоприятного влияния СГ на течение ИМ рассматриваются усиление оксидативного стресса и повышение продукции супероксидного аниона в митохондриях, в результате чего увеличивается электрическая нестабильность миокарда и усугубляется нарушение регуляции периферического сосудистого то-

нуса. Полагают, что относительная инсулиновая недостаточность и инсулинорезистентность сопровождаются нарушениями окисления глюкозы как в зонах ишемии, так и в здоровых участках сердца с увеличением метаболизма жирных кислот. Данная инверсия метаболизма способствует прогрессированию ишемии, снижению контрактильности миокарда и развитию аритмий [22].

Послеоперационные инфекции. Доказательства более высокой частоты инфекционных осложнений в послеоперационном периоде при возникновении СГ установлены относительно недавно [23, 24]. Большую склонность к возникновению инфекционных осложнений связывают с компрометацией механизмов антимикробной защиты в условиях СГ: доказано снижение бактерицидной активности крови, подвижности гранулоцитов, нарушение процесса фагоцитоза, активности комплемента и хемотаксиса. Характерно, что выраженность нарушений функциональной активности лейкоцитов напрямую сопряжена со степенью гипергликемии [25, 26]. В плане реализации негативного эффекта СГ большое значение придается гликозилированию белков — иммуноглобулинов, альбумина, тканевых протеинов.

Внебольничная пневмония. В проспективном когортном исследовании в 6 госпиталях Канады изучено влияние гипергликемии на исход у 2471 пациента с внебольничной пневмонией, поступивших в стационар, но требующих госпитализации в ОРИТ [31]. Согласно плану анализа все больные по уровню глюкозы в крови при поступлении были разделены на 3 группы: ≤ 11 ммоль/л; > 11 ммоль/л; ≥ 6,1ммоль/л.

В итоге при сравнении 2 первых групп была зарегистрирована более высокая летальность (13 % по сравнению с 9 %; p = 0.03) у лиц, имевших уровень гликемии выше 11 ммоль/л.

Выше оказалась и частота госпитальных осложнений различного характера (29 % по сравнению с

22 %; р = 0,01). При сопоставлении с пациентами, у которых содержание глюкозы не превышало 6,1 ммоль/л, различие было еще более существенным: риск смерти был выше на 73 %, а вероятность осложнений — на 52 %. Корректировка групп пациентов по тяжести с помощью расчета индекса тяжести пневмонии (Pneumonia Severity Index) не изменила сделанного заключения. Каждое повышение уровня гликемии на 1 ммоль/л от верхней границы нормы увеличивало риск осложнений на 3 %.

*Тяжелая ожоговая травма.* Персистирующая гипергликемия у детей с тяжелой ожоговой травмой ассоциировалась с более высоким риском развития бактериемии  $(0,42\pm0,04$  по сравнению с  $0,30\pm0,03$  — число позитивных культур/катетердней; p=0,05) и летального исхода (27 и 4 %; p=0,05) [15].

#### Общая популяция больных ОРИТ

Достаточно широкий диапазон повреждающих эффектов СГ и доказательства ухудшения клинических исходов в отдельных группах больных побудили к оценке ее воздействия на пациентов, госпитализируемых в ОРИТ, для которых характерен высокий риск летального исхода. Ретроспективное исследование, охватившее более чем 2-летний промежуток времени и включавшее 1826 последовательно госпитализированных в ОРИТ соматических и хирургических пациентов, было выполнено в Stamford Hospital (США) [28]. По результатам его анализа отмечено, что умершие больные в общей популяции и отдельных категориях (за исключением септического шока) имели достоверно более высокое содержание глюкозы в крови.

Госпитальная летальность повышалась пропорционально уровню гликемии, составляя 42,5 % при превышении значения в 300 мг/дл. Особо следует подчеркнуть, что стратификация трех сравниваемых групп по индексу тяжести АРАСНЕ II (0—14;

| Таблица 1. Эффекты гормонов, катехоламинов и цитокинов, обусловливающие развитие |
|----------------------------------------------------------------------------------|
| гипергликемии при критических состояниях                                         |

| Медиатор                           | Механизм формирования гипергликемии                                                                                                                                                                                              |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Эпинефрин                          | Изменение пострецепторного сигнала в клетках скелетной мускулатуры Повышение глюконеогенеза Усиление гликогенолиза в печени и мышцах Повышение липолиза и содержания свободных жирных кислот Прямое подавление секреции инсулина |
| Глюкагон                           | Повышение глюконеогенеза<br>Усиление гликогенолиза в печени                                                                                                                                                                      |
| Глюкокортикоиды                    | Повышение устойчивости к действию инсулина в скелетных мышцах<br>Усиление липолиза<br>Стимуляция глюконеогенеза                                                                                                                  |
| Гормон роста                       | Повышение устойчивости к действию инсулина в скелетных мышцах<br>Усиление липолиза<br>Стимуляция глюконеогенеза                                                                                                                  |
| Норэпинефрин                       | Усиление липолиза<br>Стимуляция глюконеогенеза                                                                                                                                                                                   |
| Фактор некроза опухоли, ИЛ-1, ИЛ-6 | Повышение устойчивости к действию инсулина в скелетных мышцах                                                                                                                                                                    |

15—24 и ≥ 25 баллов) не изменила сделанного заключения. Установленная закономерность отмечалась во всех трех группах. Авторы делают вывод о том, что даже умеренная гипергликемия, регистрируемая после госпитализации в ОРИТ, ассоциируется со значимым повышением неблагоприятного исхода независимо от профиля больных.

Однако в дальнейшем в проспективном обсервационном исследовании, касающемся, правда, исключительно соматических больных, выводы, сделанные в предыдущей работе, не получили подтверждения. Выполненный регрессионный анализ не идентифицировал уровень глюкозы в первые 24 ч пребывания в ОРИТ как значимый фактор риска смерти: таковыми служили балл по АРАСНЕ ІІ и LOD (логистическая шкала органной дисфункции), необходимость искусственной вентиляции легких (ИВЛ), содержание альбумина и лактата [32].

## Периоперационный период у кардиохирургических больных

Возникновение гипергликемии в ходе кардиохирургических оперативных вмешательств сочетается с повышением осложнений и риска смерти у лиц, не страдающих СД, — относительный риск (OP) равен 1,12 (1,06-1,19) [37].

## Эффективность контроля гликемии при критических состояниях

Накопление доказательств неблагоприятного влияния СГ на течение ряда заболеваний, послеоперационного и посттравматического периодов наряду с экспериментальными доказательствами возникновения функциональных нарушений отдельных органов и систем послужили основанием для проведения контролируемых клинических исслелований.

Первое из них, проспективное контролируемое рандомизированное Leuven study, включало 1548 больных, которым были выполнены кардиохирургические операции (59 % — аортокоронарное шунтирование; 27 % — клапанное протезирование; 14 % — комбинированное вмешательство) [30].

Сразу при поступлении в ОРИТ пациентов рандомизировали на 2 группы: обычной и интенсивной инсулинотерапии (ИИТ). В группе обычной инсулинотерапии внутривенное введение инсулина начинали при уровне глюкозы выше 215 мг/дл, который удерживали в «коридоре» 180—200 мг/дл (10,0—11,1 ммоль/л). В группе ИИТ его введение начинали с уровня глюкозы, превышающего 110 мг/дл, стремясь достичь нормальных значений — 80—110 мг/дл (4,4—6,1 ммоль/л).

У пациентов 2-й группы придерживались следующего протокола ИИТ.

Пятьдесят единиц инсулина (актрапид) разводили в 50 мл физиологического раствора, который сохранял свою стабильность при температуре 25 °C в течение 24 ч. Введение инсулина осуществляли с помощью шприца-дозатора, режим дозирования определяли по исходному уровню гликемии:

а) 6,1-12,2 ммоль/л — 2 ЕД/ч;

б) > 12,2 ммоль/л — 4 ЕД/ч.

Дальнейшую коррекцию дозирования проводили в зависимости от результатов динамической оценки содержания глюкозы: если оно превышало  $7.8\,$  ммоль/л — скорость введения увеличивали на  $1-2\,$  ЕД/ч, если оставалось в диапазоне  $6.7-7.8\,$  ммоль/л — на  $0.5-1\,$  ЕД/ч, а при значениях  $6.1-6.7\,$  ммоль/л — на  $0.1-0.5\,$  ЕД/ч до достижения значений в  $4.4-6.1\,$  ммоль/л. В случае выхода на заданный уровень глюкозы после установления стартовой скорости введения инсулина он сохранялся на прежних цифрах.

При снижении уровня глюкозы до 3,3—4,4 ммоль/л дозирование инсулина снижали до 0,5 ЕД/ч и прекращали введение инсулина при более низких значениях. К введению глюкозы в виде 10-граммовых болюсов прибегали, когда ее содержание было ниже 2,2 ммоль/л, стремясь вернуться в заданный диапазон.

Контроль содержания глюкозы в артериальной крови в первые сутки осуществляли каждые 1–2 ч до достижения нормогликемии и затем каждые 4 ч при достижении стабильных значений.

В результате авторам удалось доказать, что устранение СГ и поддержание глюкозы крови в пределах 4,4—6,1 ммоль/л (в среднем 5,7  $\pm$  1,1 ммоль/л) приносит существенную клиническую пользу: снижается общая послеоперационная летальность (4,4 % по сравнению с 8,0 %; p = 0,04), а у больных, пребывавших в ОРИТ более 5 дней, — 10,6 % по сравнению с 20,2 % (p = 0,005). Кроме того, зафиксировано повышение выживаемости в субпопуляции больных с госпитальным сепсисом, осложнившим течение послеоперационного периода, на 32 %, а при развитии бактериемии — на 46 %.

Немаловажным обстоятельством явилось также снижение затрат на интенсивную терапию, связанное с меньшей потребностью в проведении методов внепочечного очищения крови (гемодиализ), переливания эритроцитарной массы, назначения антибиотиков и возможностью более раннего прекращения ИВЛ.

В последующем исследовательская группа, возглавляемая G. Van den Berghe, распространила данную стратегию на пациентов соматического ОРИТ [33]. Однако результаты оказались заметно скромнее — повышения выживаемости удалось достичь только у пациентов, длительно пребывавших в ОРИТ (более 3 суток).

В целом на сегодняшний день проведенный метаанализ результатов исследований приемлемого качества (n = 38) позволил сделать следующее заключение: контроль уровня гликемии с помощью внутривенной инфузии инсулина позволяет снизить риск смерти на  $15\,\%$  в общей популяции госпитализированных пациентов — отношение рисков (OP)  $0.85\,(0.75-0.97)$ , у хирургических больных — в большей степени: OP =  $0.58\,(0.22-0.62)\,[39]$ .

Важно подчеркнуть, что в исследованиях, в которых использовали тактику поддержания нормаль-

ных значений уровня глюкозы 4,4-6,1 ммоль/л, она имела преимущества перед концепцией сохранения умеренной гликемии —  $OP = 0,71 \ (0,54-0,93)$ .

Для больных с ИМ обнаружена устойчивая тенденция к снижению летальности — OP = 0.89 (0.76 - 1.03), статистически достоверное снижение риска смерти доказано лишь у тех из них, кто не получал реперфузионной терапии (первичная ангиопластика, тромболизис).

Большинство исследователей отметили возникновение гипогликемических состояний (уровень глюкозы в крови менее 2,2 ммоль/л) на фоне ИИТ, их частота в среднем была в 3 раза выше, чем в контроле, — OP = 3,4 (1,9–6,3). Развитие гипогликемии, как правило, не сопровождалось какими-либо тяжелыми клиническими проявлениями и последствиями. Однако ее частота была различной, варьируя в пределах 3–10 %, что побуждало некоторых авторов отказываться от ИИТ.

Таким образом, на основании приведенных данных можно утверждать, что СГ — не просто критерий тяжести состояния, но и фактор, обладающий непосредственным влиянием на течение патологического процесса. Следует признать целесообразной необходимость строгого контроля уровня глюкозы в крови и поддержания нормогликемии.

## Патофизиологические механизмы клинической эффективности

Установленные оптимистичные клинические результаты потребовали патофизиологического обоснования. В этом направлении сделан ряд шагов.

В частности, необходимо было определить, с чем связан эффект — с контролем уровня гликемии или действием инсулина, который обладает способностью ограничивать синтез и секрецию провоспалительных цитокинов.

Результаты post hoc анализа указывают на то, что позитивный эффект прежде всего связан с устранением гипергликемии, а не с антицитокиновым действием инсулина: потребность в высоких дозах инсулина сочеталась с неблагоприятным исходом [33].

И все же сомнения оставались, поскольку известны и другие потенциально значимые для критических состояний эффекты инсулина: снижение потребности в кислороде, торможение апоптоза, активация фибринолиза, восстановление функции макрофагов.

В значительной мере они были устранены после проведения корректного экспериментального исследования, доказавшего приоритетность поддержания нормогликемии в предупреждении развития или прогрессирования эндотелиальной, печеночной, почечной дисфункции и снижении летальности. Инсулин оказывал независимое от влияния на уровень глюкозы действие, состоявшее в повышении контрактильности миокарда и частичном восстановлении способности моноцитов и нейтрофилов к фагоцитозу.

#### Контроль гликемии и реальная клиническая практика

Сохранение нормогликемии вполне вписывается в современную стратегию интенсивной терапии критических состояний — полноценной поддержки функции наряду с ИВЛ, компенсацией гиповолемии, нормализацией сосудистого тонуса и контрактильной способности миокарда, искусственным питанием. Полученные доказательства послужили основанием для включения контроля гликемии в международные междисциплинарные рекомендательные протоколы. Между тем, как в случае внедрения в практику любой новации, возникает ряд вопросов и реальных проблем. Начнем с вопросов.

1. Подавляющее большинство работ, включенных в метаанализ, касается кардиохирургических и кардиологических больных. Вывод об эффективности при сепсисе сделан на основании субпопуляционного анализа данных пациентов преимущественно с ангиогенным сепсисом.

Можно ли экстраполировать его результаты на другие категории пациентов — с тяжелой ЧМТ, острыми нарушениями мозгового кровообращения, обширными абдоминальными операциями, термической и механической травмой?

Мы полагаем, что, за исключением больных с сепсисом, нельзя. Полученные данные являются лишь основанием для организации отдельных специальных исследований, касающихся других нозологических категорий и клинических ситуаций, обладающих своими специфическими особенностями.

2. «Коридор» гликемии 4,4-6,1 ммоль/л — зона риска гипогликемии, в особенности на фоне постоянной инфузии инсулина. Существует ли клиническая разница при поддержании гликемии на уровне 6,0-8,0; 4,4-6,1 и 10,0-11,1 ммоль/л? Ответа на вопрос пока нет.

Несмотря на отсутствие неблагоприятных последствий в Leuven study, именно риск развития тяжелой гипогликемии является главным препятствием для широкого внедрения в повседневную клиническую практику ИИТ. С нашей точки зрения, использование ИИТ возможно лишь в ОРИТ с высоким уровнем дисциплины и организации работы, наличием в достаточном количестве квалифицированного персонала и соответствующего оборудования. Важнейшим моментом перед использованием тактики ИИТ является выполнение комплекса современных рекомендаций по гемодинамической и респираторной поддержке, аналгоседации, антимикробной терапии, не говоря уже о радикальной санации инфекционного очага, устранении других причин критического состояния. Их реализация воздействие на причины гипергликемии.

Особого рассмотрения в свете новых данных требует стратегия проведения искусственной нутритивной поддержки (НП).

## Гипергликемия и оптимизация выбора нутритивной поддержки

Очевидность неблагоприятного влияния СГ и аргументация строгого контроля уровня гликемии

в процессе интенсивной терапии диктуют реаниматологу необходимость более внимательно относиться к проведению НП. Действительно, хорошо известно, что одним из осложнений полного парентерального питания служит гипергликемия [42].

Не настало ли время под флагом борьбы с гипергликемией отказаться от проведения парентерального питания (ПП) в пользу более физиологичного энтерального? С позиций существующих знаний мы должны ответить — нет!

В пользу такого заключения свидетельствуют многочисленные исследования, клинический опыт и результаты длительного использования ПП на практике. Позиция большинства специалистов — это два метода искусственного питания, которые дополняют друг друга в различной степени в зависимости от состояния желудочно-кишечного тракта [42, 43].

Более того, в метаанализе, объединившем контролируемые исследования высокого качества (уровень I), опубликованном в 2005 г., показано повышение выживаемости больных, получавших ПП с первых суток поступления в ОРИТ, если не было возможности проведения энтеральной НП, в сравнении с теми, у кого таковой тактики не придерживались [41]. Отношение шансов развития летального исхода для всех больных, включенных в исследование, — 0.51 (0.27-0.91).

И наконец, в исследовании van den Berghe продемонстрировано снижение летальности и в группе лиц, у которых в силу необходимости проводили полное  $\Pi\Pi$ , — 22,3 % по сравнению с 11,1 % (р < 0,05), а общая стратегия заключалась в поэталном переходе от парентерального к энтеральному питанию. Между тем отмеченная авторами необходимость использования более высоких доз инсулина для достижения нормогликемии должна быть принята во внимание.

#### Технология проведения ПП

Оценка правильности проведения ПП в 140 ОРИТ США показала, что 47 % больных имели респираторный коэффициент (отношение продукции  $CO_2$  к потреблению  $O_2$ ) выше 1,0. Данный факт был связан с избыточным введением глюкозы — 4,48  $\pm$  1,88 мг/кг/мин (до 2—2,5 л 25% раствора в сутки) и гипергликемией.

Особенно большую нагрузку получали ожоговые больные — 6,1 мг/кг/мин.

Оказалось, что излишнему введению глюкозы помимо высокой концентрации раствора способствовало и раздельное введение нутриентов. Среди осложнений в процессе ПП регистрировались гиперосмолярные состояния и нарушения сознания.

Анализ ситуации 10 лет спустя в госпиталях, в которых внедрили новую технологию ПП «три в одном» и отказались от инфузий 25% глюкозы, по-казал снижение до минимума числа отмечавшихся ранее осложнений [49]. Об уменьшении риска метаболических осложнений при использовании ПП в варианте «все в одном» сообщают и другие авторы [9, 45].

В настоящее время готовые к использованию препараты «три в одном» в 3-камерном пакете считаются стандартом как для краткосрочного, так и для длительного ПП взрослых пациентов. Наиболее часто применяемым 3-компонентным препаратом в Европе является Кабивен, представляющий собой пакет, состоящий из 3 камер, содержащих раствор аминокислот (Вамин 18), жировую эмульсию (Интралипид) и 19% раствор глюкозы. Камеры разделены перегородками. Перед применением содержимое пакетов смешивается путем открытия специального фиксатора.

Кроме того, преимущества применения технологии «три в одном» перед изолированным введением раствора аминокислот, жировой эмульсии и глюкозы заключаются в отсутствии необходимости рассчитывать дозу, скорость инфузии отдельно аминокислот, жировой эмульсии и глюкозы, соотношение вводимых аминокислот и энергии и соотношение глюкозы и жиров. Используя 3-камерный пакет, следует лишь выбрать его нужный размер с учетом массы тела пациента. При этом практически исключается риск ошибок в дозировании и технике проведения ПП [9].

## Выбор сред при искусственном энтеральном питании

Еще раз подчеркнем, что стратегия постепенного перехода от полного ПП к полному или преобладающему энтеральному питанию является на сегодняшний день доминирующей.

Вместе с тем в свете обсуждаемой проблемы у пациентов с СГ представляется оправданным отдавать предпочтение специализированным смесям, предназначенным для больных СД. К этой группе специализированных диет относятся диазон, диасип, глюцерна и др. Общим для них является сниженное содержание углеводов и увеличение жирового компонента, за счет которого в первую очередь и осуществляется энергетическая поддержка. Важной характеристикой данных сред является более низкий гликемический индекс (ГИ), под которым понимают отношение площади под кривой содержания глюкозы в крови в течение 2 ч после приема 50 г испытываемой смеси к площади под кривой содержания глюкозы после приема 50 г чистой глюкозы. Наименьшие значения ГИ по отношению к стандартным диетам обнаружены для диазона и диасипа.

Полагают, что снижение количества углеводов в диете для пациентов с инсулинозависимым типом метаболизма одновременно с модификацией жировой формулы, состоящей в повышении содержания мононенасыщенных жирных кислот, обеспечивающих 50-60 % энергии, и добавление пищевых волокон позволяют добиться у больных СД более заметных позитивных метаболических изменений, чем при использовании стандартных диет. В проведенном недавно метаанализе показано, что при включении в формулу НП подобных диет ГИ был в 2 раза ниже, чем при использовании стандартных:  $19,4\pm1,8$  по сравнению с  $42,1\pm5,9$ ; p=0,004.

#### Роль глутамина

Дипептиды глутамина включены в рекомендации и стандарты европейских ассоциаций парентерального и энтерального питания. Внутривенное введение дипептидов глутамина восполняет дефицит глутамина, развивающегося при критических состояниях, улучшая тем самым азотистый баланс, снижая гиперкатаболизм и восстанавливая барьерную и иммунную функцию кишечника.

Доказано, что введение глутамина снижает частоту инфекционных осложнений и летальность у хирургических больных [45—47].

Идея использования глутамина при СГ связана с экспериментальными исследованиями, демонстрирующими способность аланин-глутамина (дипептивен) повышать усвоение глюкозы клеткой и синтез белка в скелетных мышцах, уменьшая степень их истощения в условиях инсулинорезистентности. Группе чешских исследователей удалось в клинических условиях доказать перспективность применения аланин-глутамина на фоне ПП у пострадавших с тяжелой травмой — индекс по шкале тяжести травмы (Injury Severity Score) > 20 и < 75 баллов [48].

#### Антиоксиданты

Активация процессов свободнорадикального окисления и снижение антиоксидантного потенциала присутствуют при многих критических состояниях и являются одними из причин формирования органной дисфункции. Гипергликемия усиливает течение данных процессов. В этих условиях роль экзогенных антиоксидантов (витамины А, Е, С, β-каротин), входящих в состав энтеральных диет или препаратов для ПП, может еще более возрастать. Роль и пути введения новых из них, ставших доступными для клинического использования, например селена, требуют отдельного обсуждения.

#### Заключение

СГ является одним из проявлений метаболической дисфункции, осложняющей течение различных критических состояний, включая сепсис, механическую, термическую и операционную травму, ИМ и повреждения головного мозга. В свете современных данных ее развитие является не только признаком тяжести состояния, но и дополнительным фактором органно-системного повреждения. Риск развития СГ или степень ее выраженности могут быть снижены посредством строгого соблюдения базовых принципов интенсивной терапии и более широкого использования в повседневной практике технологии ПП «три в одном», специализированных энтеральных диет. При принятии решения о проведении ИИТ следует иметь в виду зависимость ее эффективности от профиля больных и более чем 3-кратное повышение риска гипогликемических состояний, даже в условиях соблюдения протокола и адекватного наблюдения за пациентом.

#### Список литературы

- 1. Lewis K., Kane S., Bobek M. et al. Intensive insulin therapy for critically ill patients // Annalas of Pharmacotherapy. 2004; 38 (37): 1243-51.
- 2. Carter E.A. Insulin resistance in burns trauma // Nutr. Rev. 1998; 56: 170-6.
- 3. Deitch E.A., Vincent J.-L., Windsor A. Sepsis and multiple organ dysfunction: a multidisciplinary approach. Philadelphia, Pa: W.B. Saunders, 2002.
- 4. Jeevanandam M., Young D.H., Shiller W.R. Glucose turnover, oxidation, and index recycling in severely traumatized patients // J. Trauma Infect. Crit. Care. 1990; 30: 582-9.
- 5. Shamoon H., Hendler R., Shervin R.S. Sinergistic interactions among anti-insulin hormone in the pathogenesis of stress hyperglycemia in humans // J. Clin. Endocrinol. Metabol. 1981; 52: 1235-41.
- 6. Shervin R.S., Sacca L. Effects of epinephrine on glucose metabolism in humans: contribution of the liver // Am. J. Physiol. 1984; 247: 157-65.
- 7. Connolly C.C., Steiner K.E., Stevenson R.W. et al. Regulation of lipolysis and ketogenesis by norepinephrine in conscious dogs // Am. J. Physiol. 1991; 261: 466-72.
- 8. Montori V.M., Basu A., Erwin P.J. et al. Posttransplantation diabetes: a systematic review of the literature // Diabetic Care. 2002; 25: 583-93.
- 9. Kwoun M.O., Ling P.R., Lydon E. et al. Immunologic effects of acute hyperglycemia in nondiabetics rats // JPEN. 1997; 21: 91-5.
- 10. Kehlet H., Brandt M.R., Prange-Hansen A. Effect of epidural analgesia on metabolic profiles during and after surgery // Br. J. Surg. 1979; 66: 543-6.
- 11. Sriecker T., Carli F., Sheiber M. et al. Propofol/sufentanil anesthesia supresses the metabolic and endocrine response during, not after low abdominal surgery // Anest. Analg. 2000; 90: 450-5.
- 12. Gore D.C., Chikes D., Heggers J. et al. Associated of hyperglycemia mortality after severe burn injury // J. Trauma. 2001; 51: 540-4
- 13. Giesecke K., Hamberger B., Jarnberg P.O. High- and low-dose fentanyl anaesthesia: hormonal and metabolic response during cholecystectomy // Br. J. Anaesth. 1988; 61: 575-82.
- 14. Parsons M.V., Barber P.A., Desmond P.M. et al. Acute hyperglycemia adversely affects stroke outcome: magnetic resonance imaging in spectroscopy study // Ann. Neurol. 2002; 52: 20-8.
- 15. Weir C.J., Murray C.D., Dyker A.G. et al. Is hyperglycemia an independent predictor of poor outcome after acute stroke? Results of long-term follow up study // BMJ. 1997; 314: 1303-6.
- 16. Williams L.S., Rotich J., Qi R. et al. Effects on admission hyperglycemia on mortality and cost in acute ischemic stroke // Neurology. 2002; 59: 67-71.
- 17. Capes S.E., Hunt D., Malmerg K. et al. Stress hyperglycemia and increased risk of death after infarction with and without diabetes: a systematic overview // Lancet. 2000; 355: 773-8.
- 18. Rovlias A., Kotsou S. The influence of hyperglycemia on neurological outcome in patients with severe head injury // Neurosurgery. 2000; 46(2): 335-42; discussion 342-3.
- 19. Oliver M.F., Opie L.H. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias // Lancet. 1994; 343: 155-8.
- 20. Zacharias A., Habib R.H. Factors predisposing to median sternotomy complications // Chest. 1996; 110: 1173-8.
- 21. L'Ecuyer P.B., Murphy D., Little J.R. et al. The epidemiology of chest and leg wound infections following cardiothoracic surgery // Clin. Inf. Dis. 1996; 22: 424-9.
- 22. Davidson N.J., Sowden J.M., Fletcher J. // J. Clin. Pathol. 1984; 37: 783-6.
- 23. MacRury S.M., Gemmel C.G., Paterson K. et al. Changes in phagocytic function with glycaemic control in diabetic patients // J. Clin. Pathol. 1989; 42: 1143-7.
- 24. Krinsley J.S. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients // Mayo Clin. Proc. 2003; 78: 1471-8.
- 25. Van den Berghe G., Wouters P., Weekers F. Intensive insulin therapy in critically ill patients // N. Engl. J. Med. 2001; 345: 1359-67.
- 26. McAlister F.A., Majumdar S.R., Blitz S. et al. The relation between hyperglycemia and outcome in 2,471 patients admitted to the

hospital with community-acquired pneumonia // Diabets Care. 2005; 28: 810-5.

- 27. Freire A., Bridges L., Umpierrez G. et al. Admission hyperglycemia and other risk factors as predictors of hospital mortality in a medical ICU population // Chest. 2005; 128: 3109-16.
- 28. Van den Berghe G., Wouters P., Weekers F. et al. Outcome benefit of intensive insulin therapy in critically ill: insulin dose versus glycemic control // Crit. Care Med. 2003; 31 (2): 359-66.
- 29. Nasraway S. Hyperglycemia during critically illness // JPEN. 2006; 30 (3): 254-8.
- 30. Doenst T., Wijeysundera D., karkouti K. et al. Hyperglycemia during cardiopulmonary bypass in an independent risk factor for mortality in patients undergoing cardiac surgery // J. Thorac. Cardiovasc. 2005; 130: 1144.
- 31. Pittas A.G., Siegel R.D., Lau D. Insulin therapy and in hospital mortality in critically ill patients: systematic review and meta-analysis of randomized controlled trials // JPEN. 2006; 30 (2): 164-72.
- 32. Simpson F. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle // Intensive Care Med. 2005; 31: 12-23.
- 33. Sobotka L., ed. Basics in clinical nutrition / Edited for ESPEN Courses. 2<sup>nd</sup> ed. Prague: Galen, 2000.
- 34. A.S.P.E.N. Board of Directors and the Clinical Guidelines Task Force. Guidelines for the use of parenteral and enteral nutrition in adult and paediatric patients // JPEN. 2002; 26: supplement.
- 35. Campos A.C. et al. Clinical use of total nutritional admixtures // Nutrition. 1990; 6: 347-56.
- 36. Pichard C. et al. Economic investigation of the use of three-compartment total parenteral nutrition bag: prospective randomized unblinded controlled study // Clin. Nutr. 2000; 19: 245-51.
- 37. Griffiths R.D., Allen K.D., Andrews F.J., Jones C. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection // Nutrition. 2002 Jul-Aug; 18 (7–8): 546-52.
- 38. Powell-Tuck J., Jamieson C.P., Bettany G.E. et al. A double blind, randomised, controlled trial of glutamine supplementation in parenteral nutrition // Gut. 1999 Jul; 45 (1): 82-8.

- 39. Wischmeyer P.E., Lynch J., Liedel J. et al. Glutamine administration reduces Gram-negative bacteremia in severely burned patients: a prospective, randomized, double-blind trial versus isonitrogenous control// Crit. Care Med. 2001 Nov; 29 (11): 2075-80.
- 40. Bakalar B., Pacchl J., Duska F. et al. Parenterally administered dipeptide alanyl-glutamine prevents worsening of insulin sensitivity in multiple-trauma patients // Crit. Care Med. 2006 Feb; 34(2): 381-6.
- 41. Shloerb P. Glucose in parenteral nutrition: a survey of US Medical centers // JPEN. 2004; 28 (6): 447-52.
- 42. Guenst J.M., Nelson L.D. Predictors of total parenteral nutrition-induced lipogenesis // Chest. 1994; 105: 553-9.
- 43. Попова Т.С., Шестопалов А.Е., Тамазашвили Т.Ш., Лейдерман И.Н. Нутритивная поддержка больных в критических состояниях. — М.: ООО Издат. дом «М-Вести», 2002.
- 44. Ellger B., Debaveye Y., Vanhorebeek I. et al. Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin // Diabetes. 2006; 55: 1096-105.
- 45. Михельсон В.А., Салтанов А.И., Шараева Т.Е. Специализированное клиническое питание дополнительные возможности нормализации углеводного обмена в хирургии и интенсивной терапии // Вестн. интенс. тер. 2005; 3: 68-74.
- 46. Van Drunen J., Hofman Z., Kuipers H. The glycemic index of standard and dibetes-specific clinical nutrition products // www.numico-research.com
- 47. Сепсис в начале XXI века. Классификация, клинико-диагностическая концепция и лечение. Патологоанатомическая диагностика: Практическое руководство. — М.: Издательство НЦССХ им. А.Н. Бакулева РАМН, 2004.
- 48. Dellinger R.P., Carlet J., Masur H. et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock // Crit. Care Med. 2004; 32: 858-73.
- 49. Hofman Z., van Drunen J., Kuipers H. The glycemic index of standard and diabets-specific enteral formulas // Asia Pac. J. Clin. Nutr. 2006; 15: 412-7.

Получено 20.01.13 □

Руднов В.А.

Уральська державна медична академія, м. Єкатеринбург, Росія

#### КЛІНІЧНА ЗНАЧИМІСТЬ І МОЖЛИВІ ШЛЯХИ КОРЕКЦІЇ ГІПЕРГЛІКЕМІЇ ПРИ КРИТИЧНИХ СТАНАХ

**Резюме.** В огляді наведені критерії, механізми розвитку, патофізіологічні наслідки стресорної гіперглікемії — одного із проявів метаболічної дисфункції, що ускладнюють перебіг різних критичних станів, включаючи сепсис, механічну, термічну й операційну травму, інфаркт міокарда й ушкодження головного мозку.

**Ключові слова:** стресорна гіперглікемія, критичні стани, інфаркт міокарда, інсульт, травма.

Rudnov V.A.

Ural State Medical Academy, Yekaterinburg, Russia

# CLINICAL SIGNIFICANCE AND POSSIBLE WAYS OF HYPERGLYCEMIA CORRECTION IN CRITICAL CONDITIONS

**Summary.** In the review there were provided criteria, pathogenesis, pathophysiological effects of stress hyperglycemia — one of the manifestations of metabolic dysfunction complicating clinical course of different critical conditions, including sepsis, mechanical, thermal and surgical trauma, myocardial infarction, and brain damage.

**Key words:** stress hyperglycemia, critical conditions, myocardial infarction, stroke, trauma.