УДК 616.23[.25:616.1]-085.217.22

Ю.Н. Краснова, Е.А. Петухова, А.А. Дзизинский

ИСПОЛЬЗОВАНИЕ БЕТА-АДРЕНОМИМЕТИКОВ У БОЛЬНЫХ БРОНХООБСТРУКТИВНЫМИ ЗАБОЛЕВАНИЯМИ С СОПУТСТВУЮЩЕЙ КАРДИАЛЬНОЙ ПАТОЛОГИЕЙ

Иркутский государственный институт усовершенствования врачей (Иркутск)

C целью оценки кардиальных эффектов бета-адреномиметиков у больных бронхообструктивными заболеваниями с сопутствующей ИБС, обследован 121 больной ХОБЛ и БА (у 63 из них сопутствующая ИБС). Средний возраст пациентов — 59.9 ± 9.3 года. Пациенты однократно ингалировали 0.5 и 1 мг фенотерола гидробромида (Φ); 2.5 и 5 мг сальбутамола (C); раствор беродуала (0.25/0.5 мг и 0.5/1 мг) (E) с помощью небулайзера и проводился трехнедельный курс лечения сальметеролом (E) по E00 мкг в день. Контролировались E10 мд и выполнялось E24-х часовое холтеровское мониторирование ЭКГ Небулайзерная терапия E2-E4 в дозах не превышающих однократно для E6 мл купирования бронхообструктивного синдрома у больных с сопутствующей ИБС, так как не приводит к возникновению аритмий, не индуцирует ишемию мискарда и не влияет на E10 мд. Применение сальметерола не приводит к гемодинамическим нарушениям и ишемии мискарда, в том числе у больных со стабильной ИБС.

Ключевые слова: ХОБЛ, бета-адреномиметики, бронхиальная астма, ИБС

THE USE OF β_2 -ADRENOMIMETICS IN PATIENTS WITH BRONCHOOBSTRUCTIVE PATHOLOGY AND ISCHEMIC HEART DISEASE

Yu.N. Krasnova, E.A. Petukhova, A.A. Dzizinsky

State Institute of Physicians' Training, Irkutsk

Cardiovascular effects of β_2 -agonists were studied in 121 patients with BA and COPD (mean age 59,9 \pm 9,3), including 63 patients with IHD. All patients received 0,5 and 1 mg fenoterol (F); 2,5 and 5 mg salbutamol (S); berodual (0,25/0,5 mg and 0,5/1 mg) via nebuliser and 100 mg of salmeterol a day for 3 weeks. Blood pressure, SpO $_2$ and Holter monitoring ECG were evaluated before treatment and during the cure. The therapy of β_2 -agonists (F - 0,5 and S - 2,5 mg) could be used by patients with IHD. It did not induce arrhythmias and myocardial ischemia. Salmeterol didn't give haemodynamic changes and didn't induce myocardial ischemia in patients with IHD.

Key words: chronic obstructive lung disease, β_2 -adrenomimetics, bronchial asthma, ischemic heart disease

Существующие бета-адреномиметики (β -AM) подразделяются на две группы: неселективные и селективные. Следует помнить, что селективность не носит абсолютного характера, и по тропности к β -адренорецепторам (β -AR) препараты этой группы различаются. Наиболее селективным из короткодействующих β_2 -AM является сальбутамол, а из пролонгированных β_2 -AM — сальметерол.

Основные побочные эффекты β_2 -АМ связаны с воздействием их на сердечно-сосудистую систему (ССС). Мета-анализ 33 рандомизированных плацебо-контролируемых исследований по оценке побочного влияния β_2 -АМ у больных бронхообструктивными заболеваниями показал, что β_2 -АМ повышают риск серьезных сердечно-сосудистых осложнений (инфаркт миокарда, аритмий и внезапной смерти) [3].

Результаты исследования H. David Au et al. среди 1529 пациентов с хроническими обструктивными заболеваниями легких и систолической дисфункцией левого желудочка, использующих β_2 -AM, показали, что применение β_2 -AM ассоциировано с повышенным риском госпитализаций от сердечной недостаточности и смертности от всех причин. [2]

Как известно, основные гемодинамические и кардиальные эффекты β_2 -AM заключаются в снижении периферического сопротивления, диастолического АД, увеличении ЧСС, ударного объема сердца и систолического АД, уменьшении времени предызгнания и времени изгнания из левого желудочка. Положительный хронотропный эффект β_2 -AM является дозозависимым, хотя существуют исследования, показывающие, что при исходной тахикардии, обусловленной в большей степени выраженным бронхообструктивным синдромом, использование β_2 -AM может приводить к снижению ЧСС на фоне улучшения бронхиальной проходимости.

Имеются данные об аритмогенном действии β_2 -AM. Возникновение аритмий у больных бронхообструктивными заболеваниями может быть обусловлено гиперкатехоламинемией, удлинением интервала QT и гипокалиемией.

Существует лишь небольшое количество противоречивых исследований по влиянию β_2 -AM на ССС у больных ишемической болезнью сердца (ИБС) и артериальной гипертензией.

В крупном проспективном исследовании (10486 пациентов) исследователи заключили, что ингаляционные β_2 -AM могут повышать риск ин-

фаркта миокарда и нестабильной стенокардии у пациентов с хроническими обструктивными заболеваниями легких [3].

С другой стороны, результаты исследования S. Suissa et al. среди 12090 больных ХОБЛ, в том числе 1127 пациентов с инфарктом миокарда свидетельствуют, что использование короткодействующих β_2 -AM не приводит к повышению риска возникновения инфаркта миокарда [4].

Отсутствие влияния β_2 -AM на возникновение ишемии миокарда было продемонстрировано в исследовании A.B. Gaspardone et al., которые показали, что число депрессий сегмента ST, возникших на фоне физической нагрузки после ингаляции сальбутамола, сопоставимо с плацебо [1].

В последнее время широкое распространение получила небулайзерная терапия β_2 -AM, при которой дозы препаратов в 10-30 раз превышают таковые, используемые в дозированном аэрозоле. Учитывая, возможные отрицательные кардиальные эффекты этой группы препаратов, остро стал вопрос о безопасности β_2 -AM, ингалируемых через небулайзер у больных бронхообструктивными заболеваниями в сочетании с ИБС.

Эта проблема послужила темой нашего собственного исследования.

МАТЕРИАЛЫ И МЕТОДЫ

Обследован 121 больной хроническими обструктивными заболеваниями легких (ХОБЛ, БА) в период обострения. Средний возраст пациентов составил 59,9 \pm 9,3 года. В исследование не включались больные с тяжелым обострением БА, требующим введения короткодействующих β_2 -агонистов чаще одного раза в 4 часа.

У 63 из них была диагностирована сопутствующая ИБС (стенокардия напряжения II—III функционального класса и постинфарктный кардиосклероз). Больные с острым коронарным синдромом и жизнеугрожаемыми нарушениями ритма в исследование не включались. Все пациенты были разделены на 4 равные группы.

Пациенты 1-й группы однократно с интервалом не менее 4-х часов ингалировали 0,5 и 1 мг фенотерола гидробромида (беротека); 2-й группы 2,5 и 5 мг сальбутамола (вентолина); 3-й группы раствор беродуала (0,25, 0,5 мг и 0,5, 1 мг ипратропиум бромида и фенотерола гидробромида соответственно) с помощью небулайзера. Пациентам 4-й группы проводился 3-х недельный курс лечения сальметеролом по 50 мкг два раза в день.

До каждой ингаляции препарата и через 15, 30 и 60 минут после нее оценивались сатурация кислорода (SpO $_2$) портативным оксипульсиметром (OXI-PULSE, США), артериальное давление (АД) методом Короткова. Ингаляции лекарственных препаратов в день исследования проводились на фоне 24-часового мониторирования ЭКГ (холтеровская система DRG Medi Arc $^{\rm tm}$ Premier I, США). На протяжении 1 часа, предшествующего каждой ингаляции, и 1 часа после нее анализировались частота сердечных сокращений (ЧСС), нарушения рит-

ма и проводимости, динамика сегмента ST, а также оценка вариабельности сердечного ритма методом спектрального анализа (Total Power, VLF, LF, HF, LF/HF, LF nu, HF nu) по 5-тиминутным интервалам.

Пациентам 4-й группы исходно и на 20-21 день лечения серевентом проводилось 24-х часовое холтеровское мониторирование ЭКГ с оценкой среднесуточной и ночной ЧСС, количества эктопических наджелудочковых и желудочковых комплексов, нарушений проводимости, количество и продолжительность эпизодов ишемии миокарда.

Статистическая обработка полученных результатов проводилась на персональном компьютере с использованием пакета прикладных программ «Віоstat». Описательная статистика проводилась с помощью медианы, 10 и 90 процентилей. Достоверность изменений сравниваемых показателей анализировалась непараметрическими методами, в частности при динамическом анализе данных в одной группе использовался критерий Уилкоксона, в разных группах — критерий Манна-Уитни. Оценка достоверности сравниваемых качественных показателей проводилась с помощью критерия χ^2 . Различия величин оценивали как достоверные при уровне p < 0.05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В случае небулайзерной терапии средними дозами получены достоверные различия в изменении сатурации кислорода (SpO $_2$) до и после ингаляции беротека -1,0 (-3,0-2,0) % (p<0,05). После использования высоких доз вентолина, беротека и беродуала отмечалось снижение SpO $_2$, при этом Δ SpO $_2$ до и после ингаляции беротека составила -2,0 (-4,0-1,0) % (p<0,05), вентолина --1,5 (-3,1-1,1) % (p<0,001), беродуала --1,0 (-3,0-3,0) % (p>0,05). Несмотря на незначительное снижение SpO $_2$ после применения высоких доз b_2 -агонистов в целом по группе, у некоторых пациентов, в том числе и с сопутствующей ИБС, отмечалось уменьшение SpO $_2$ до уровня показателей, характеризующих гипоксемию.

Отсутствовали достоверные различия во влиянии использованных бронхолитиков на уровень систолического АД. Использование небулайзерной терапии β_2 -АМ приводило к дозозависимому снижению диастолического АД.

Использование вентолина, беротека и беродуала в средних дозах, ингалируемых через небулайзер, приводило к приросту ЧСС. При чем наибольшим положительным хронотропным действием обладал вентолин, прирост ЧСС после его использования в период с 40 по 60 минуту составил +10,5 ударов в минуту и достоверно отличался от прироста ЧСС после ингаляции беродуала +1,5 в тот же временной промежуток (p < 0,01).

Применение высоких доз вентолина и беродуала приводило к более выраженному приросту ЧСС. Прирост ЧСС после ингаляции вентолина и беродуала достоверно не различался, но был статистически достоверно более высок в сравнении с ДЧСС после применения беротека (p < 0.005) (табл. 1).

ДЧСС после ингаляции различных доз бронхолитиков

Препараты		Средние дозы препаратов	Высокие дозы препаратов
Вентолин	0–20 мин.	4,5 (-3,3–13,0) ***	4,1 (-2,1-21,5) ***
	20–40 мин.	10,2 (-0,6-18,7) ****	9,7 (-1,1-29,0) ****
	40–60 мин.	10,5 (0,1–17,7) ****	11,2 (2,9–28,6) ****
Беротек	0–20 мин.	0,6 (-7,8-10,1)	0,5 (-5,3-8,9)
	20–40 мин.	0,1 (-7,2-12,8)	2,0 (-8,019,1)
	40–60 мин.	4,7 (–10,1–16,1)	5,7 (-4,5-17,3) *
Беродуал	0–20 мин.	1,8 (-4,6-9,1)	6,5 (-2,0-13,9) ****
	20–40 мин.	3,7 (-5,8-12,8) ***	8,2 (0,6–22,9) ****
	40–60 мин.	1,5 (-5,7-17,1)	11,0 (-1,0-35,6) ****

Примечание: *-p < 0.05; ***-p < 0.005; ****-p < 0.001 по сравнению с исходными данными.

Опасных нарушений ритма и проводимости в случае небулайзерной терапии беротеком и беродуалом не зарегистрировано. После ингаляции 5,0 мг вентолина был зарегистрирован кратковременный пароксизм суправентрикулярной тахикардии.

Исследуемые бронхолитики, ингалируемые в средних дозах с помощью небулайзера, не индуцировали ишемию миокарда. После использования 1,0 мг беротека, 5,0 мг вентолина и высоких доз беродуала в 26 — 43 % случаев возникала ишемия миокарда.

Применение средних доз вентолина, беротека и беродуала не приводило к изменению вегетативного статуса, так как не было выявлено значимых сдвигов показателей спектрального статуса вариабельности ритма сердца. Высокие дозы всех исследуемых бронхолитиков приводили к значимому снижению общего спектра вариабельности сердечного ритма, так средняя величина Total Power до приема вентолина составила 1279,5, после 671,5 (Δ – 607,75, p < 0.01), до приема беротека 1879,5, после 1313,5 ($\Delta -$ 509,5, p < 0,001), до приема беродуала 1716,3, после $1453 (\Delta - 263,5, p < 0,05)$. Применение беротека кроме того приводило к увеличению уровня LF nu c 54,38 до 59,38 (Δ + 6,125, p < 0,05). Прием беродуала приводил к достоверному приросту соотношения LF/HF с 2,81 до 3,14 (Δ + 0,33, p < 0,05), повышения уровня LF nu с 49,09 до 63,48 (Δ + 14,39, p < 0,05), снижению уровня HF nu с 21,6 до 19,32 (Δ – 2,28, p < 0,05). Эти изменения характеризуют повышение активности симпатической нервной системы.

Снижение эффективности короткодействующих β_2 -АМ при длительном использовании обусловлено их способностью вызывать десенситизацию β -адренергической рецепции, в связи с чем β_2 -агонисты короткого действия используются только для неотложной терапии или короткими курсами в период обострения БА и ХОБЛ. Пролонгированные β_2 -АМ не вызывают десенситизации β_2 -рецепторов, поэтому могут применяться длительно и включены в терапию для продолжительного контроля среднетяжелой и тяжелой БА, а также при стабильном течении ХОБЛ.

При оценке хронотропного эффекта сальметерола получены следующие результаты: в группе больных с ИБС отмечался незначительный прирост среднесуточной ЧСС, по-видимому, связанный с увеличением двигательной активности пациентов, так как различий при анализе ночной ЧСС исходно и на фоне применения сальметерола не получено. По данным дневниковых записей пациентов с сопутствующей ИБС, на фоне 3-х недельного лечения сальметеролом ни у одного больного не отмечено увеличения эпизодов стенокардии в течении суток, также не возросла потребность в нитроглицерине. По данным холтеровского мониторирования ЭКГ терапия сальметеролом не приводила к увеличению количества и продолжительности эпизодов депрессий сегмента ST.

ЗАКЛЮЧЕНИЕ

Для купирования бронхообструктивного синдрома у больных БА и ХОБЛ в период обострения, имеющих сопутствующую стабильную ИБС, возможно использовать небулайзерную терапию β_2 -АМ в дозах, не превышающих однократно для сальбутамола 2,5 мг, фенотерола — 0,5 мг вследствие их выраженного бронхолитического эффекта и кардиальной безопасности.

Использование короткодействующих β_2 -АМ у больных БА должно быть ситуационным, т.е. для купирования симптомов. Высокая потребность в β_2 -АМ (чаще 2-3 раз в сутки) является показателем неконтролируемого течения БА, и, следовательно, требует коррекции плановой терапии.

При недостаточно контролируемом течении БА, альтернативой увеличения дозы ингаляционных глюкокортикостероидов является комбинированная терапия ингаляционными глюкокортикостероидами в сочетании с пролонгированными β_2 -АМ, так как комбинированная терапия не приводит к гемодинамическим изменениям и ишемии миокарда, в том числе у больных со стабильной ИБС, и следовательно может длительно использоваться для контроля БА у данной категории больных.

ЛИТЕРАТУРА

- 1. Gaspardone A. Effects of beta 2-adrenomimetic stimulation on exercise-induced myocardical ischemia / A. Gaspardone, F. Crea, J. Kashi // American Journal of Cardiology. 1991. N 68. P. 111 114.
- 2. Risk of mortality and heart failure exacerbations associated with inhaled beta-adrenoceptor agonists among patients with known left ventricular systolic dysfunction / D.H. David Au, E.M. Udris, V.S. Fan
- et al. // Chest. -2004. Mar. Vol. 125 (3). P. 1174 1175.
- 3. Salpeter S.R. Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis / S.R. Salpeter, T.M. Ormiston, E.E. Salpeter // Chest. -2004. Vol. 125. P. 2309-2321.
- 4. Suissa S. Inhaled short acting beta agonists use in COPD and risk of acute myocardial infarction / S. Suissa, T. Assimes, P. Ernst // Thorax. -2003. Jan. Vol. 58 (1). P. 43-46.