Наследственные нарушения обмена серосодержащих аминокислот

Е.Я. Гречанина, Р. Маталон, Ю.Б. Гречанина, И.В. Новикова, В.А. Гусар, Б. Холмс, С. Жукс, П.Л. Реди, С. Тайринг

Hereditary sulfur amino acid metabolic disturbances

E. Ya. Grechanina, R. Matalon, Yu.B. Grechanina, I.V. Novikova, V.A. Gusar, B. Holmes, S. Szucs, P.L. Rady, S. Tyring

Украинский институт клинической генетики; Харьковский специализированный медико-генетический центр, Украина; Медицинский университет Галвестона (США); Медицинский университет Хьюстона (США)

Проблема фено- и генотипических сопоставлений для адекватной диагностики становится все более значимой по мере рождения молекулярной медицины. Развитие современных методов исследования позволяет получать информацию, которая ранее была недоступна, поэтому ее оценка возможна не сразу, а по мере накопления опыта и знаний. Представлена попытка сопоставления некоторых генетических особенностей популяции и характера распространенной патологии, связанной с нарушением обмена серосодержащих аминокислот, на основании применения как методов классической генетики, так и современных технологий. Обосновано, что частная проблема нарушений обмена некоторых аминокислот является составляющей сложного процесса функционирования генома.

Ключевые слова: дети, метилентетрагидрофолатредуктаза (MTHFR), метионинсинтаза редуктаза (MTRR), RFC1, дефекты невральной трубки, Украина, серосодержащие аминокислоты, гомоцистеин/гомоцистин, заболевания сосудов.

Pheno- and genotypic comparisons for adequate diagnosis becomes more important as molecular medicine emerges. The development of the currently available studies provides the information that has been earlier unavailable therefore it cannot be assessed immediately, but this can be done as experience and knowledge are accumulated. The paper attempts to compare some genetic features of a population and the pattern of a common pathology associated with sulfur amino acid metabolic disturbances, by applying both classical genetic studies and current technologies. There is evidence that the partial problem of impaired metabolism of some amino acids is a constituent of a delicate process of genome functioning.

Key words: children, methylene tetrahydrofolate reductase, methionine synthase reductase, RFC1, neural tube defects, Ukraine, sulfur amino acid, homocysteine/homocystine, vascular disease.

Реномное здоровье человека — фундамент психического, соматического и репродуктивного здоровья. Эта истина, доказанная многими генетиками мира, была воспринята обществом лишь после утверждения ВОЗ и ЕС в 1990 г. роли генетических нарушений в возникновении и редких, и распространенных наследственных болезней человека.

Здоровье программируется в период созревания половых клеток и на ранних этапах индивидуального развития. Состояние здоровья зависит как от характера полученной от родителей генетической информации, так и от условий внешней среды, в которой она реализуется [1, 2]. Установлено также, что активность генов на протяжении жизни человека зависит от взаимодействия с другими ге-

нами, от внешней среды и от генетических механизмов регуляции генной активности [2].

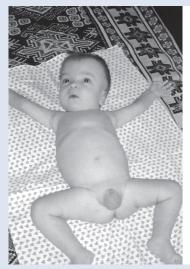
Расшифровку строения генома человека приравнивают по силе влияния на его жизнь с открытием строения Солнечной системы, теории относительности и периодической системы Менделеева. Мир стоит на пороге рождения молекулярной медицины — науки, которая занимается диагностикой, лечением и профилактикой наследственных и ненаследственных болезней на генном уровне, обеспечивая индивидуальное лечение на основе правильно поставленного диагноза, обнаружения молекулярной мишени и индивидуального подбора для лечения нуклеиновых кислот. Знания, полученные в процессе расшифровки строения генома, убеждают в том, что без информации о клинических особенностях болезней человека молекулярная медицина не принесет ожидаемого результата. Причинно-следственные взаимоотношения могут быть установлены только совместными усилиями клинициста, генетика,

© Коллектив авторов, 2009

Ros Vestn Perinatol Pediat 2009; 1:53-61

Адрес для корреспонденции: 61022 Украина, Харьков, пр. Правды, д. 13

биохимика, молекулярного генетика и фармако-генетика [3].


Серосодержащие аминокислоты (метионин, гомоцистеин, гомоцистин, цистатионин, цистеин, цистин и таурин) становятся центром притяжения внимания специалистов. Одними из первых генетиков, изучивших серосодержащие аминокислоты, стали академики Ю.Е. Вельтищев, родоначальник клинической биохимической генетики в СССР, и Н.П. Бочков, создавший систему медико-генетической помощи населению в СССР. Интерес к обмену метионина связан с тем, что нарушение его метаболизма в большинстве случаев приводит к тяжелым наследственным болезням человека [4, 5]. С нашей точки зрения, возможно влияние этой аминокислоты на эпигенетическую регуляцию экспрессии многих генов. Именно поэтому появляющиеся методы исследования серосодержащих аминокислот создают новые возможности для оценки разнообразных клинических вариантов. Если ранее расстройство метаболизма фолатов и гомоцистеина рассматривалось как очевидная причина мультифакторных пороков ЦНС (дефекты закрытия невральной трубки), то в настоящее время уже можно говорить о системном влиянии такого нарушенного метаболизма.

Каждый больной с моногенной патологией становится объектом научного поиска, логических и доказательных выводов. Приведенная краткая выписка из истории болезни хорошо подтверждает изложенное выше. Так, у ребенка С., 7 мес жизни (рис. 1) с задержкой статокинетического развития, синдромом мышечной гипотонии, гепатоспленомегалией нами выявлены недостаточность фермента метилентетра-

гидрофолатредуктазы (MTHFR, полиморфизм C677T — гетерозиготное состояние) и недостаточность метионинсинтазы редуктазы (MTRR, полиморфизм A66G — гетерозиготное состояние).

В родословной ребенка зарегистрированы гипертоническая болезнь, ишемическая болезнь сердца, инсульт, синдром Дауна у тети пробанда. Акушерско-гинекологический анамнез матери неблагоприятный: первая беременность — менингоцеле у плода, прерывание беременности в срок 26 нед; вторая — антенатальная гибель плода. Ребенок от третьей беременности, протекавшей с угрозой прерывания на протяжении всего срока. Роды преждевременные, в 37 нед беременности. В родильном доме отмечены отечность век, мраморность кожных покровов, выраженный легочный дистресс-синдром. В возрасте 1 мес наблюдалась гепатоспленомегалия, пирамидная недостаточность в дистальных отделах конечностей, изменение структуры мозга по данным нейросонографии. В возрасте 3,5 мес на основании наличия пастозности нижних конечностей, мышечной гипотонии ребенку был поставлен диагноз гипотиреоза. Однако после исследования уровня гормонов в крови диагноз был снят. В 5 мес жизни была выявлена гидроцефалия с расширением наружных ликворных пространств. Ребенок был направлен на консультацию в Харьковский специализированный медико-генетический центр.

При обследовании у ребенка были отмечены следующие клинические симптомы: отставание психоречевого развития, гипотония, судороги, мышечная спастичность, нарушение походки, изменение структуры мозга по данным магнитно-резонансной томографии, гепатоспленомегалия, гепатоз, кисты

 $Puc.\ 1.$ Фенотип ребенка 7 мес жизни с недостаточностью 5,10-метилентетрагидрофолатредуктазы, полиморфизмом С677T гена MTHFR и недостаточностью метионинсинтазы редуктазы, полиморфизмом A66G гена MTRR. Объяснения в тексте.

в почках, дегенерация сетчатки, нарушение структуры волос. В лабораторных анализах обнаружена макроцитарная, мегалобластная анемия, наличие гиперсегментоядерных гранулоцитов, тромбоцитопения. При использовании специальных методов исследования выявлено увеличение почечной экскреции гомоцистина и метилмалоновой кислоты, повышение уровня метионина и гомоцист(е)ина (свободный и общий) в плазме крови.

Фенотип ребенка не соответствовал фенотипу классической гомоцистинурии, а более напоминал фенотип больного с нарушением обмена жирных кислот, косвенным клиническим признаком которого были макроцефалия, характер строения лица и кисты в почках.

Мы расценили указанное наблюдение как проявление генетического компаунда (полиморфизмов С677Т гена *МТНFR* и А66G гена *МТRR* в гетерозиготном состоянии), при котором клинические признаки в результате взаимодействия генов создают диагностические трудности. Нельзя исключить, что метильные группы, донором которых является метионин, принимают участие в эпигенетической регуляции функции генома. Возможно, уязвимость ДНК за счет дефицита метильных групп приводит к экспрессии других «молчащих» мутаций, что в данном случае влечет за собой нарушение обмена жирных кислот и формирование Цельвегер-подобного фенотипа.

Установлено, что высокий уровень гомоцистина в крови является фактором высокого риска первичной тромбоэмболической болезни, а недостаточность термолабильного фактора фермента *МТНFR* оказывается наиболее частой причиной данной формы гипергомоцистинемии. Этот термолабильный вариант обусловлен полиморфизмом С677Т. К гипергомоцистинемии приводит чаще всего гомозиготность по указанному полиморфизму, но ограниченное потребление фолиевой кислоты может провоцировать гипергомоцистинемию и у гетерозиготных носителей. Нередко они имеют ранние проявления нарушения функции почек вследствие гипергомоцистинурии.

Схема метаболизма метионина демонстрирует высокое разнообразие потенциальных нарушений с различными клиническими признаками (рис. 2).

G. Hoffmann [3] и F. Skovbi [цит. по 6] наиболее полно осветили процесс преобразования серосодержащих аминокислот в организме человека и сформулировали возможные варианты клинических нарушений. Метионинаденозилтрансфераза (МАТ) превращает метионин в S-аденозилметионин, являющийся наиболее важным донором метильных групп при клеточном метаболизме и обеспечивающий синтез холина, креатина, адреналина, метилирование ДНК. После реакции ме-

тилирования S-аденозилметионин гидролизуется в гомоцистеин.

Гомоцистеин — промежуточный метаболит в обмене метионина, не содержащийся в пище. У здоровых людей в плазме в свободной форме содержится только 20-30% всего гомоцистеина и его димера — гомоцистина [3]. Остающийся гомоцистеин реметилирует в метионин с помощью фермента MTHFR, который активируется фолатами (витамин B_{11}), и фермента метионинсинтазы, активируемой кобаламином (витамин B_{12}) [6]. Донором метильных групп в этой реакции является 5-метилентетрагидрофолат, который восстанавливается в процессе фолатного цикла с вовлечением MTHFR и других ферментов. Метионин также может восстанавливаться с помощью бетаин-гомоцистеинметилтрансферазы (бетаин — донор метильных групп).

Расщепление гомоцистеина в цистатионин и цистеин катализируется посредством витамин B_6 -зависимых ферментов — цистатионин- β -синтазы и цистатионазы. Затем цистеин снова катаболизируется в сульфит, который окисляется в сульфат посредством молибденсодержащего фермента — сульфитоксидазы, и экскретируется с мочой [3].

Установлено, что генетические дефекты в синтезе цистатионин-β-синтазы, сульфитоксидазы, метионинсинтазы и MTHFR могут привести к задержке развития ребенка и нарушениям со стороны ЦНС, в частности, к умственной отсталости. Наиболее вероятно, что в результате тератогенного действия продуктов нарушенного метаболизма у плода возникают пороки ЦНС (анэнцефалия, менингоцеле). Дефекты ферментов цистатионинβ-синтазы и сульфитоксидазы, вызывающих сублюксацию хрусталика глаза, в то же время могут вести к различным клиническим фенотипам. Дефицит цистатионин-β-синтазы и *MTHFR* является одним из наиболее частых нарушений с широким спектром клинических проявлений — от тяжелого поражения до бессимптомного течения [7, 8]. Недостаточность сульфитоксидазы в клиническом отношении однородна, однако генетически гетерогенна [9].

У нелеченых пациентов с функциональными дефектами *MTRR* из-за недостаточности метилкобаламина (заболевание cblE или cblG) наблюдаются отставание в развитии и гипергомоцистинурия [8]. У пациентов с врожденными нарушениями биосинтеза кобаламинов, приводящими к сочетанию дефицита как аденозилкобаламина, так и метилкобаламина, также наблюдается дефект метилмалонил-СоА-мутазы и поэтому у них, в дополнение к гипергомоцистинурии и отставанию в развитии (заболевание cblC, cblD или cblF), наблюдается метилмалоновая ацидурия [4]. Наследственная недостаточность фермента γ-цистатионазы не вы-

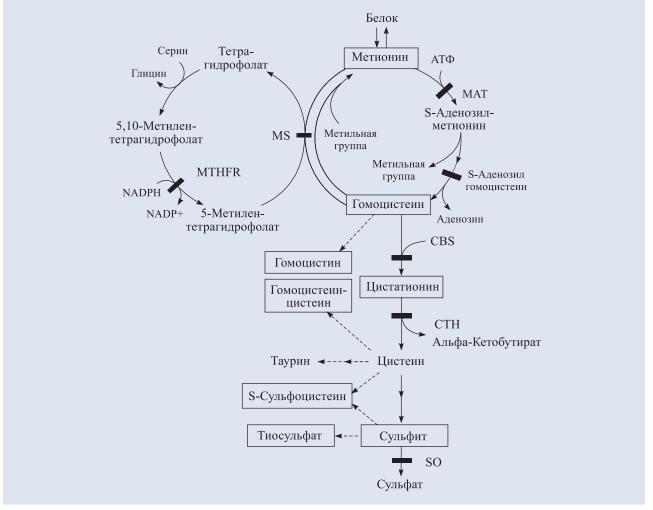


Рис. 2. Метаболический путь биосинтеза метионина [6].

MAT — метионинаденозилтрансфераза; MTRR — метионинсинтаза редуктаза (альтернативный фермент бетаин-гомоцистеин метилтрансфераза); MTHFR — 5,10-метилентетрагидрофолатредуктаза; MS — метионинсинтаза; CBS — цистатионин- β -синтаза; CTH — цистатионин- γ -лиаза; SO — сульфитоксидаза.

зывает никаких клинических проявлений, кроме цистатионурии [7].

При дефиците фермента цистатионин-β-синтазы описано наибольшее число мутаций. Среди ирландских пациентов в большинстве случаев выявлена мутация G307S. Эта мутация снижает активность фермента и степень пиридоксинчувствительности. Она характерна для классической формы гомоцистинурии, которая при неонатальном скрининге проявляется высоким уровнем метионина в крови [3]. В Норвегии и Северной Европе преобладают мутации 1278Т и R266K, которые ассоциированы с высокой степенью пиридоксинчувствительности. Среди афро-американского населения выявлен только один аллель Т350М, ассоциированный с низким уровнем пиридоксинчувствительности [10, 11].

Частота новорожденных, у которых при неонатальном скрининге была обнаружена гомо-

цистинемия, колеблется от 1:58 000 в Ирландии до 1:900 000 в Японии (средняя мировая частота 1:344 000). Однако тот факт, что диагностика на основании клинических проявлений дает более высокую частоту заболевания, чем по результатам биохимического скрининга, заставляет предположить выраженную генетическую гетерогенность патологии. В Ирландии большинство пациентов являются пиридоксиннечувствительными, а частота их выявления во время скрининга — высокая. В Дании проведен молекулярный скрининг 500 новорожденных, который показал, что 1,4% из них являются гетерозиготами по мутации Ile278Thr. Это сообщение определило частоту гомозигот как 1:25 500, или 3—4 ребенка в год.

Накопленный учеными опыт демонстрирует выраженное плейотропное действие патологических генов, обусловливающих нарушения обмена метионина. Так, увеличение содержания гомоци-

стеина в сыворотке крови приводит к образованию некротических дегенеративных участков в почках, селезенке, слизистой оболочке желудка, костной ткани, сосудах. Повреждающее действие гомоцистеина проявляется и при воздействии его на интиму артерий среднего и крупного калибра с последующей агрегацией на ней тромбоцитов. При этом использование антикоагулянтов предотвращает тромбообразование, но не восстанавливает поврежденную интиму сосудов [2].

Гомоцистеин активирует также фактор Хагемана и, тем самым, способствует тромбообразованию. Обладая низкой растворимостью, он может оседать в патологически измененной стенке сосудов и создавать условия для образования тромбов. При гомоцистинурии у больных, которые погибли от тромбозов церебральных сосудов, гистологический анализ мозговой ткани выявляет некротически-дегенеративные поражения мозговой ткани. Структурные изменения костей при этом заболевании характеризуются остеопорозом. Также отмечаются жировое перерождение и белковая дистрофия печени. Эти данные, представленные Ю.Е. Вельтищевым и Н.П. Бочковым в 1992 г., сыграли решающую роль в обосновании необходимости определения частоты гомоцистинурии в Украине и поиска генетически гетерогенных форм патологии.

Патология глаз при гомоцистинурии характеризуется дегенеративным поражением в круговых волокнах хрусталиков и цилиарных телах. Утверждение Ю.Е. Вельтищева о том, что при гомоцистинурии гомоцистин связывается с альдегидами — производными лизина, препятствует образованию поперечных связей коллагена и приводит к выраженному изменению соединительной ткани, позволило нам выделить в обширной группе больных с соединительнотканными дисплазиями различные варианты гомоцистинурии и объяснить повышение почечной экскреции оксипролина и гликозаминогликанов [12].

Фракционный анализ гликозаминогликанов у больных с гомоцистинурией выявил преобладание тех из них, которые содержат идуроновую кислоту (дерматансульфат, хондроитин-4,6-сульфат). Преобладание дерматанподобных фракций гликозаминогликанов представляет собой компенсаторную реакцию организма, так как дерматансульфат обладает антикоагулянтной активностью, благоприятствует увеличению толщины волокон, способствует организации трофоколлагена в волокна высшего порядка. Гомоцистин повышает активность синтеза сульфатированных гликозаминогликанов. Замечание Ю.Е. Вельтищева и соавт. [2] о том, что гомоцистинурия характеризуется понижением способности к репарации повреждений ДНК, индуцированных мутагенами, позволило нам, исходя из современных данных о механизмах регуляции генной экспрессии, предположить причину многообразия клинических проявлений и полидиагностическую направленность в процессе уточнения диагноза у больных детей.

Полученные нами в ряде наблюдений данные об особенностях полиморфизмов в ядерной и митохондриальной ДНК, скорее всего, свидетельствуют о наличии четкой функциональной связи и взаимодействии полиморфизмов двух геномов. По-видимому, первичные нарушения обмена серосодержащей аминокислоты метионина вовлекают в патологический процесс и другие стороны метаболизма. Именно это обстоятельство является причиной многообразия клинических признаков гомоцистинурии.

Среди существующих классификаций наследственных болезней обмена серосодержащих аминокислот нам представляется наиболее адекватной классификация N. Blau и соавт. (2004), отраженная в таблице. Наиболее полно описанными в мировой литературе являются три «большие» формы патологии: гомоцистинурия, вызванная недостаточностью цистатионин-β-синтазы (классическая гомоцистинурия); гомоцистинурия, вызванная дефектами синтеза метилкобаламина; гомоцистинурия, вызванная недостаточностью метилентетрагидрофолатредуктазы.

Целью нашего многолетнего исследования было изучение фено- и генотипических взаимоотношений у пробандов с подозрением на нарушение обмена серосодержащих аминокислот и генетическим полиморфизмом *MTHFR*, *MTRR* и редуцированного переносчика фолатов 1 (reduced folate carrier 1, RFC1) в популяции высокого генетического риска дефектов закрытия невральной трубки для определения роли полиморфизмов в модификации клинических признаков болезней.

Чтобы выполнить поставленную цель, мы пошли путем накопления клинических данных, результатов биохимических исследований и внедрения молекулярных методов при обследовании обратившихся в Харьковский специализованный медико-генетический центр семей с подозрением на врожденную или наследственную патологию (в среднем 30 000 в год). По мере накопления в мире знаний о формах гомоцистинурии изменялось число больных с подозрением на нарушение обмена серосодержащих аминокислот. Биохимическая диагностика носила дифференциальный характер, и, поэтому, использовались сначала тонкослойная хроматография, затем высокоэффективная жидкостная хроматография аминокислот, в последующем присоединилась газовая хроматография/масс-спектрометрия, тандемная массспектрометрия (последняя — в сотрудничестве

НАСЛЕДСТВЕННЫЕ БОЛЕЗНИ

Классификация наследственных болезней обмена серосодержащих аминокислот (Blau N. и соавт., 2004)

№ п/п	Нарушение/недостаточность	Определение /комментарии	Генный символ	OMIM¹ №
1.1	Метионинаденозилтрансфераза I/III	Печеночная форма	MATIA	250850
1.2	S-аденозилгомоцистеингидро- лаза	Возможно, миопатия	AHCY	180960
1.3	Глицин N-метилтрансфераза	Возможно, легкая форма	GNMT	606664
2	Цистатионин-β-синтаза		CBS	236200
2.1	Цистатионин-β-синтаза	Пиридоксинчувствительная форма	CBS	236200
2.2	Цистатионин-β-синтаза	Пиридоксинпромежуточная форма	CBS	236200
2.3	Цистатионин-β-синтаза	Пиридоксиннечувствительная форма	CBS	236200
3	ү-цистатионаза	Встречаются легкие формы	СТН	219500
4.1	Кофактор молибдена	Одновременно дефицит сульфитоксидазы и ксантин/ альдегид оксидазы	MOCS1 MOCS2	252150
4.2	Сульфитоксидаза	Изолированная	SUOX	272300 252150 252160
5	5,10-метилентетрагидрофолатредуктаза		MTHFR	236250
5.1	5,10-метилентетрагидрофолатредуктаза		MTHFR	236250
5.2	5,10-метилентетрагидрофолатредуктаза	Термолабильный вариант присутствует в большинстве популяций, клиническая экспрессия зависит от потребления фолатов	MTHFR, 667C>T	236250
6	Метионинсинтаза	Функциональный дефект		
6.1	Кобаламин Е	Метионинсинтаза редуктазы	CblE	236270
6.2	Кобаламин G	Дефект с недостаточностью метионинсинтазы	CblG	250940
7	Метилмалонилмутаза (аденозилкобаламин) и метионинсинтаза (метилкобаламин) cblD, cblF	Функциональный дефект		
7.1	Кобаламин С	Цитозольная редукция гидроксикобаламина	cblC	277400
7.2	Кобаламин D	Цитозольная редукция гидроксикобаламина	cblD	277410
7.3	Кобаламин F	Лизосомальный транспорт	cblF	277380

Примечание. ¹ Online Mendeliane Inheritance in Man.

с университетом Фрайбурга, Германия). Поиск мутаций митохондриальной ДНК осуществлялся параллельно в группе больных с подозрением на

нарушения биоэнергетического обмена (в сотрудничестве с университетом Пенсильвании, Филадельфия, США).

Данный спектр исследований объяснялся широтой поставленной цели. Попытка расшифровки генома больного и здорового человека успешна лишь при условии применения комплексных исследований, проведение которых не только изменяет наше представление, но и приводит к необходимости использования новых понятий. Нам представляется своевременным введение термина «клиническая протеогеномика», который означает, что тайны наследственной патологии расшифровывают врачклиницист, профессиональным орудием которого является соматогенетическое исследование, врачбиохимик, использующий комплекс современных технологий, и специалист по молекулярной генетике, способный секвенировать геном и выявить мутации или полиморфизмы, потенциально связанные с искомой патологией.

Мы пришли к заключению, что дефекты невральной трубки относятся к категории заболеваний, требующих именно такого подхода. Принято считать, что дефекты невральной трубки являются распространенными врожденными пороками мультифакториального генеза, в развитии которых играют роль как генетические факторы, так и факторы окружающей среды. Основная роль при этих дефектах отводится нарушению метаболизма фолатов и гомоцистеина. Установлено, что и генетические, и внешние факторы могут увеличить риск формирования указанных пороков. Благодаря достижениям молекулярной генетики с помощью применения анализа единичных нуклеотидных полиморфизмов, регулирующих метаболизм фолатов, стало возможным объяснить относительное влияние внешних факторов в сочетании с генетическими на частоту дефектов невральной трубки.

Данной проблеме посвящены многочисленные исследования, позволившие установить, что у женщин, получающих фолиевую кислоту в процессе преконцепционной профилактики, снижается риск рождения детей с дефектами невральной трубки на 50-70% [7-9]. В развитии этого направления первичной профилактики Харьковскому специализованному медико-генетическому центру принадлежат определенные приоритеты. Однако основа знаний о связи состояния обмена фолатов и развития указанных дефектов не является исчерпывающей: пороки невральной трубки могут развиться из-за недостаточного потребления фолатов, их нарушенной абсорбции, дефектов метаболизма или снижения метилирования. Наряду с этим мониторинг статуса фолатов в плазме крови, оценка генетической составляющей формирования дефектов невральной трубки обеспечивают понимание риска их возникновения. Ясно одно, что единичные нуклеотидные полиморфизмы в генах, ответственных за метаболизм фолатов и гомоцистеина, имеют прочную связь с пороками невральной трубки.

Известно, что в клетке фолаты используются в качестве доноров метильных групп. В редуцированной форме фолаты используются для переноса метильных групп на гомоцистеин для образования метионина. В результате реакции АТФ и метионина образуется S-аденозилметионин, который метилирует ДНК, липиды и белки. Снижение клеточной концентрации S-аденозилметионина или повышенное ингибирование метилтрансферазы может привести к нарушениям регуляции генной экспрессии, белковой функции, метаболизма липидов и нейротрансмиттеров. Таким образом, любые расстройства обмена фолатов могут серьезно нарушать функцию клетки, особенно во время интенсивного роста [4].

Недостаточное поступление фолатов в клетку в виде 5-метилтетрагидрофолата может наступить в результате дефицита RFC1. Так как RFC1 является первичным белком для интернализации 5-метилтетрагидрофолата, мутации в гене, кодирующем RFC1, ассоциируются с нарушением абсорбции фолатов. Таким образом, полиморфизм G80A (his→arg) гена RFC1 обусловливает более низкий уровень фолатов, который может также возникать в результате мутаций в других генах, связанных с метаболизмом гомоцистеина, например, в гене MTHFR [10]. Кроме того, индивидуумы, гомозиготные или гетерозиготные по мутации гена, кодирующего RFC1, с компаундом мутаций, скорее всего, имеют полиморфизм гена *МТНFR*, повышающий риск формирования дефектов невральной трубки [11].

Альтернативным событием, при котором в клетке увеличивается уровень фолатов, является фермент MTHFR, который катализирует восстановление 5,10-метилентетрагидрофолата в 5-метилтетрагидрофолат [5]. Для этой реакции необходимы как адекватное поступление фолатов, так и адекватно функционирующая MTHFR. Из 62 известных мутаций, нарушающих функцию данного фермента, три являются наиболее изученными — C677T, A1298C и G1793A. Они могут влиять на ферментативную активность [13]. В частности, С677Т полиморфизм (ala→val) ферментативно термолабилен. У гомозиготных и гетерозиготных носителей полиморфизма С677Т средняя ферментативная активность составляет 30 и 65% соответственно по сравнению с нормой при 37°C [14].

Полиморфизм A1298C (glu→ala) также связан со сниженной активностью этого фермента. Ни гомозиготное, ни гетерозиготное состояние при полиморфизме A1298C не сопровождаются повышением уровня гомоцистеина в крови или снижением уровня фолатов, эти нарушения наблюдаются у

гомозиготных носителей С677Т [15]. Тем не менее полиморфизмы С677Т и А1298С наиболее вероятно взаимодействуют как сложные гетерозиготы, в результате чего детерминируется более низкая ферментативная активность, чем у гетерозигот, по любому из двух полиморфизмов. Данные состояния сопровождаются повышением уровня гомоцистеина в крови или снижением уровня фолатов [16, 17]. Таким образом, как гомозиготы С677Т, так и сложные гетерозиготы С677Т и А1298С могут являться индивидами высокого генетического риска возникновения дефектов невральной трубки, особенно в случаях, когда у них наблюдается низкий уровень фолатов в крови.

Полиморфизм G1793A гена *MTHFR* приводит к замещению аргинина на глутамат в кодоне 594 аминокислотной последовательности. Частота данного варианта намного ниже, чем С677Т и А1298С, и колеблется от 1,3% в популяции евреев Ашкенази до 6,9% в европеоидной популяции [17]. У гетерозигот G1793A, больных диабетом II типа, продемонстрировано повышенное содержание гомоцистеина в крови [18]. Важно отметить, что повышенный уровень гомоцистеина сопровождает многие заболевания, например, коронарный артериит, венозный тромбоз и поэтому этот показатель может использоваться как биомаркер биологической активности ферментов, связанных с различными патогенными процессами и, в том числе, с формированием дефектов невральной трубки [19, 20].

Метионинсинтаза редуктаза поддерживает требуемые уровни метилкобаламина и активирует кофактор синтеза метионина. Гомозиготность по A66G полиморфизму (замещение изолейцина метионином) гена *MTRR* приводит к умеренному

повышению уровня гомоцистеина в плазме, которое не зависит от уровня фолатов, кобаламина и пиридоксина [21]. R. Wilson и соавт. отмечают значительное увеличение риска расщелины позвоночника у пациентов, которые являются либо гомозиготными по мутации MTRR в сочетании с низким уровнем кобаламина в крови или гомозиготными как по MTRR A66G полиморфизму, так и по MTHFR C677T полиморфизму [22]. Таким образом, взаимодействие между MTRR A66G полиморфизмом и сложными мутантными генотипами и внешними факторами может быть нормализовано приемом витаминов, которые снизят риск возникновения врожденных пороков [23].

В заключение следует отметить, что мир стоит на пороге революционных преобразований в медицине — рождается молекулярная медицина с ее основным постулатом — индивидуальным лечением больного, индивидуализацией профилактики. Такой подход повысит ценность скрининговых программ и устранит необоснованное воздействие на всю популяцию некоторых применяемых методов профилактики заболеваний, которые кроме пользы потенциально могут оказаться вредными для лиц с альтернативными генотипами. Мир уже пережил последствия всеобщей аспиринизации и безхолестерольной диеты. На смену опасным популяционным воздействиям приходит логичная коррекция на основе молекулярных исследований. С этой точки зрения наше исследование является попыткой показать обоснованность индивидуальной профилактики и индивидуальной коррекции на примере распространенных пороков нервной системы и сосудистых заболеваний, связанных с генными полиморфизмами.

ЛИТЕРАТУРА

- 1. Бочков Н.П. Клиническая генетика: Учебник. 2-е изд., перераб. и доп. М: ГЭОТАР-МЕД 2002; 448.
- 2. Наследственная патология человека. Под. ред. Ю.Е. Вельтищева, Н.П. Бочкова. М 1992; 530.
- 3. *Hoffmann G.F.* Inherited metabolic diseases. Lippincot Williams and Wilkins 2002; 367.
- Blom H.J., Shaw G.M., den Heijer M., Finnell R.H. Neural tube defects and folate: case far from closed. Nat Rev Neurosci 2006; 7: 9: 724—731.
- Frosst P., Blom H. J., Milos R. et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111-113
- 6. *Blau N.* Physician's guide to the laboratory diagnosis of metabolic diseases. 1996; 507.
- Vitamin Research Group—Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991; 338: 131—137.
- Czeizel E., Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 1992; 327: 1832—1835.

- 9. Smithells R. W., Sheppard S., Schorah C. J. et al. Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1980; 1: 339—340.
- Berry R. J., Li Z., Erickson J. D. et al. Prevention of neuraltube defects with folic acid in China. N Engl J Med 1999; 341: 1485—1490.
- 11. Rady P. L., Szucs S., Grady J. et al. Genetic Polymorphism (G80A) of Reduced Folate Carrier Gene in Ethnic Populations. Mol Genet Metab 2001; 73: 285—286.
- 12. Furie K.L., Kelly P.J. Homocysteine and stroke. Semin Neurol 2006; 26: 24—32.
- 13. *Martin Y.N.*, *Salavaggione O.E.*, *Eckloff B.W. et al.* Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenet Genomics 2006; 16: 265—277.
- 14. van der Put N.M., Gabreels F., Stevens E. M. et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998; 62: 1044—1051.
- 15. Weisberg P., Tran B., Christensen S. et al. A second genetic polymorphism in methylenetetrahydrofolate reductase

- (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64: 169—172.
- 16. Rady P.L., Tyring S.K., Hudnall S.D. et al. Methylenetetrahydrofolate Reductase (MTHFR): The Incidence of Mutations C677T and A1298C in the Askenazi Jewish Population. Am J Med Genet 1999; 86: 380—384.
- 17. Rady P.L., Szucs S., Grady J. et al. Genetic Polymorphisms of Methylenetetrahydofolate Reductase (MTHFR) and Methionine Synthase Reductase (MTRR) in Ethnic Populations in Texas; a Report of a Novel MTHFR Polymorphic Site, G1793A. Am J Med Genet 2002; 107: 162—168.
- 18. *Melo S.S.*, *Persuhn D.C.*, *Meirelles M.S. et al.* G1793A polymorphisms in the methyl- enetetrahydrofolate gene: Effect of folic acid on homocysteine levels. Mol Nutr Food Res 2006; 50: 769—774.
- 19. De Bree W.M., Verschuren D., Kromhout L. A. et al. Homocysteine determinants and the evidence to what extent ho-

- mocysteine determines the risk of coronary heart disease. Pharmacol Rev 2002; 54: 599—618.
- Refsum H., Nurk E., Smith A.D. et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 2006; 136: 1731S—1740S.
- 21. *Gaughan D.J., Kluijtmans L.A., Barbaux S. et al.* The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001; 157: 451—456.
- Wilson R., Platt R., Wu D. et al. A Common Variant in Methionine Synthase Reductase Combined with Low Cobalamin (Vitamin B₁₂) Increases Risk for Spina Bifida. Molecular Genetics and Metabolism 1999; 67: 317—323.
- Forouhi N.G., Sattar N. CVD risk factors and ethnicity—a homogeneous relationship? Atheroscler 2006; Suppl 7: 11—19.

Поступила 05.09.08

Течение и лечение заболеваний перианальной области у детей с диагнозом болезни Крона

Course and treatment of perianal disease in children newly diagnosed with Crohn's disease

D.J. Keljo, J. Markowitz, C. Langton, T. Lerer, A. Bousvaros, R. Carvalho, W. Crandall, J. Evans, A. Griffiths, M. Kay, S. Kugathasan, N. Leleiko, D. Mack, P. Mamula, M.S. Moyer, M. Oliva-Hemker, A. Otley, M. Pfefferkorn, J. Rosh, J.S. Hyams; Pediatric Inflammatory Bowel Disease Collaborative Research Group

Inflamm Bowel Dis 2008

Авторы проанализировали методы лечения и особенности течения заболеваний перианальной области у детей с вновь поставленным диагнозом болезни Крона.

Сведения были получены от Педиатрической ассоциации, занимающейся проблемами воспалительных заболеваний кишечника у детей. Кроме того, проанализированы данные проспективных мультицентровых исследований у детей в возрасте 16 лет с диагнозом: воспалительное заболевание кишечника. Для исследования отбирались дети с болезнью Крона и перианальной патологией со сроком наблюдения не менее 24 мес, с индексом активности болезни Крона больше 0, а также пациенты с абсцессами и фистулами.

Из 246 пациентов у 41 отмечались поражения перианальной области в течение 30 дней после установления диагноза. У 13 из них наблюдалось поражение кожи, тогда как у 28 были выявлены фистулы и/или абсцессы. Более поздние поражения купировались через год у 20 больных, а у 8 отмечалось развитие хронического или перианального поражения. Пациентам с фистулой была показана антибиотикотерапия (инфликсимаб), детям без фистулы проводилось иммуномодулирующее лечение. У детей с хроническими заболеваниями перианальной области отмечалось снижение массы тела, таким больным гораздо чаще было показано оперативное вмешательство.

Заключение: приблизительно 10% пациентов с вновь диагностированной болезнью Крона имеют перианальные свищи и/или абсцессы на момент установления диагноза. Большинство фистул разрешается в течение года на фоне медикаментозной терапии.

Референт А.И. Асманов