Гликированный гемоглобин – основной параметр в контроле сахарного диабета

И.В. Мисникова, А.В. Древаль, Ю.А. Ковалева

ГУ Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского (директор – член-корр. РАМН Г.А. Оноприенко)

ликированный гемоглобин (Hb_{A1c}) является основным показателем для оценки компенсации сахарного диабета (СД) и верификации риска развития микро- и макрососудистых осложнений. Повышение уровня Hb_{A1c} ассоциировано с повышением риска развития поздних осложнений как у больных СД1, так и СД2 [1, 2, 3].

У лиц без СД уровень ${\rm Hb_{A1c}}$ находится в пределах от 4 до 6%. Не вызывает сомнения факт, что снижение уровня гликированного гемоглобина является важнейшей задачей при лечении СД. Однако у ведущих международных организаций нет единого мнения о целевых значениях ${\rm Hb_{A1c}}$ у больных СД (табл. 1).

Так, Американская диабетическая ассоциация (АДА) рекомендует снижение $Hb_{A1c} \le 7\%$. Международная диабетическая ассоциация, Американская ассоциация клинических эндокринологов и Европейское сообщество кардиологов/Европейская ассоциация по изучению диабета предлагают более жесткие критерии компенсации СД ($Hb_{A1c} \le 6,5\%$).

В последние годы было проведено два крупных исследования (ACCORD и ADVANCE), целью которых являлась сравнительная оценка сердечно-сосудистых рисков у больных СД2 в группах более и менее интенсивного контроля гликемии [8, 9]. Причем интенсивность контроля оценивалась по уровню HbA1c. Так, в исследовании ACCORD больные СД2 были рандомизированы в две группы, в одной целевым значением Ньыс был уровень ≤6,0%, в другой 7–7,9%. В исследовании ADVANCE проводилось сравнение между группой интенсивного контроля с целевым уровнем НbA1с≤6,5% и группой стандартного лечения. Результаты этих двух исследований оказались противоречивы. Исследование ACCORD в группе интенсивного контроля было прекращено раньше срока, так как у больных этой группы было обнаружено повышение риска смерти по сравнению с группой контроля [8]. Результаты исследования ADVANCE не подтвердили повышение риска смерти у больных СД2 в группе интенсивного контроля [9]. Кроме того, в исследовании ADVANCE в группе интенсивного контроля было отмечено снижение риска развития серьезных осложнений диабета на 10 %, риска нефропатии – на 21%, риска протеинурии – на 30%. Различия в полученных результатах можно объяснить разными алгоритмами назначения сахароснижающих препаратов. И, что особенно важно, частотой гипогликемических реакций, в том

числе тяжелых, которая была выше в исследовании ACCORD. Возможно, это явилось причиной повышения риска смерти у больных интенсивной группы контроля. Кроме того имелись отличия в базовых клинических характеристиках больных, включенных в исследование. Так, больные, включенные в исследование ACCORD, имели исходно более высокие средние показатели HbA1c, ИМТ и большую длительность СД.

Выводы, которые, по-видимому, должны быть сделаны по результатам исследований ACCORD и ADVANCE заключаются в необходимости достижения целевых значений HbA_{1c} при обеспечении безопасности лечения сахароснижающими препаратами с учетом рисков гипогликемических реакций и индивидуальных особенностей пациентов.

К сожалению, небольшой процент больных СД достигают целевых значений гликемии. Так в США только 36% больных СД2 имеют удовлетворительный уровень компенсации (Hb_{A1c} <7%) [10, 11]. В Европе доля больных с хорошим гликемическим контролем (Hb_{A1c} <6,5%) составляет 31%.

Для определения степени компенсации СД в Московской области были выборочно обследованы с определением уровня HbA_{1c} 1476 больных СД1 и СД2 из 24 муниципальных образований. Анализ проводился в условиях биохимической лаборатории ГУ МОНИКИ в 2002 г. Формирование выборки осуществлялось случайным образом, по 100 человек из каждого муниципального образования. Подбор для включения в исследование проводился районными эндокринологами. От каждого муниципального образования в исследование были включены от 20 до 103 человек.

На основании полученных результатов установлено, что в среднем уровень Hb_{A1c} составил 8,6%. Целевые значения Hb_{A1c} (менее 7%) были достигнуты только у 28,04% больных от общего числа обследованных. У 7,7% больных выявлена субкомпенсация сахарного диабета (уровень Hb_{A1c} был в пределах 7–7,5%). Большинство больных (64,3%) находились в декомпенсированном состоянии (Hb_{A1c} >7,6%). Существенной разницы в среднем уровне Hb_{A1c} между больными СД1 и СД2 не установлено.

По данным проведенного исследования у больных СД2, находившихся на диете, уровень Hb_{A1c} соответствовал нормальным значениям; достоверной разницы в уровне Hb_{A1c} у больных, получающих лечение пероральными сахаросни-

Таблица 1

Критерии компенсации для взрослых больных сахарным диабетом^ по рекомендациям различных международных организаций				
Организация	A1c (%)	ГПН (ммоль/л)	ППГ (ммоль/л)	
АДА* [4]	<7	3,9-7,2	<10	
AAKE**[5]	≤6,5	<6	<7,8	
МДФ***[6]	≤6,5	<6	<8	
ЕСК/ЕАИД****[7]				
•СД1	≤6,5	<6	7,5–9	
•СД2	≤6,5	<6	<7,5	

^{*}Американская диабетическая ассоциация; **Американская ассоциация клинических эндокринологов; ***Международная диабетическая ассоциация; ****Европейское сообщество кардиологов/Европейская ассоциация по изучению диабета; ^при отсутствии беременности; ГПН – глюкоза плазмы натощак; ППГ – постпрандиальная гликемия.

Таблица 2

Средние значения HbA1c (%) у больных СД2 в зависимости от вида получаемой терапии (по данным выборки)				
Вид терапии	Диета	ПССП	Инсулинотерапия	
Hb _{A1c} (%)	5,71±0,36	8,33±1,96	8,86±1,75	

жающими препаратами (ПССП) или инсулином не выявлено (табл. 2).

При анализе данных регистра СД Московской области за 2007 год установлено, что хорошую компенсацию (Hb_{A1c} <6,5%) имели 5,02% больных СД1 и 22% больных СД2. Показатели Hb_{A1c} менее 7% зарегистрированы у 9,27% больных СД1 и 41,6% больных СД2. Выраженная декомпенсация (Hb_{A1c} более 10%) наблюдалась у 4,37% больных СД1 и 8,99% больных СД2 (табл. 3).

Средние значения НьА1с у больных СД2 не различались в зависимости от пола (табл. 4). В зависимости от получаемого лечения наиболее высокие показатели отмечались у больных, получающих комбинированное лечение ПССП и инсулином $(8,10\pm0,07\%)$, это говорит, вероятнее всего, о недостаточной дозе назначаемого инсулина, а также, возможно, о необходимости в полном переводе на инсулинотерапию без ПССП. Оптимальная компенсация отмечена в группе пациентов, находившихся на монотерапии диетой. Возможно, это связано с более активным и ранним назначением эндокринологами ПССП, вследствие чего на диете остаются исключительно те больные, которым действительно не требуется добавления медикаментозной сахароснижающей терапии. Статистически достоверной разницы в показателях НьА1с у больных СД2, получавших ПССП или инсулинотерапию не получено (p < 0.05).

Анализ степени компенсации больных СД по данным регистра СД Московской области за 2003–2007 показал относительно стабильный уровень Hb_{A1c} за 5 лет наблюдения. В 2007 году у взрослых больных СД1 показатель Hb_{A1c} составил 7,91±0,06%, у подростков 8,84±0,17%, у детей 8,44±0,12%, при СД2 – 7,5±0,03% (табл. 5).

Существенным ограничением приведенного выше анализа является то, что не всем больным СД проводят определение HbA1c, вследствие чего не представляется возможным в полной мере делать выводы о состоянии компенсации всех больных диабетом в Московской области.

Для оценки состояния углеводного обмена больного СД и своевременного принятия решения о пересмотре сахароснижающей терапии уровень Hb_{A1c} должен определяться регулярно – один раз в 3–4 месяца. В настоящее время используются различные аналитические методы для определения Hb_{A1c} , поэтому значения Hb_{A1c} могут различаться. Это необходимо учитывать при выборе лаборатории и, следовательно, метода определения Hb_{A1c} . Для определения уровня гликированного гемоглобина сертифицированы следующие методы: ионообменная хроматография высоко-

го давления (ВЭЖХ), ионообменная хроматография низкого давления, аффинная хроматография, иммунотурбидиметрия, аффинная хроматография на микроколонках. Метод ВЭЖХ наиболее полно соответствует современным требованиям лабораторной диагностики. Он положен в основу работы анализатора D10 компании «Био-Рад Лаборатории» [12]. К несомненным преимуществам анализатора D10 «Био-Рад Лаборатории» относится отличная воспроизводимость результатов, простота в эксплуатации, высокая пропускная способность, возможность использования для проведения анализа как венозной, так и капиллярной крови, а также сравнения полученных результатов с результатами референсных лабораторий мира.

При определенных состояниях, влияющих на средний срок жизни эритроцитов крови, можно получить ложные результаты Hb_{A1c} . Повышение уровня Hb_{A1c} можно получить при железодефицитной анемии. При кровотечениях или гемолизе происходит снижение уровня Hb_{A1c} .

Учитывая необходимость регулярного мониторинга уровня Hb_{A1c} у всех больных СД, особое значение приобретает стандартизация результатов тестирования. Национальной программой стандартизации гликогемоглобина США (NGSP) предусматривается стандартизация на основании данных исследования DCCT, результаты которого были опубликованы в 1993 году. Этот метод используется многие годы, однако не является настоящим референсным методом. В 2007 году Американской диабетической ассоциацией, Европейской ассоциацией по изучению диабета, Международной федерацией клинической и лабораторной медицины и Международной диабетической федерацией был принят консенсус по стандаропределения гликированного гемоглобина. Калибровка A_{1c} будет проводиться согласно новому референсному методу и результаты анализов должны быть представлены в следующем виде $[A_{1c} (\%); A_{1c} (ммоль/моль),$ и расчетный показатель средней гликемии). Разработка нового метода стандартизации HbA1c стала возможной, когда были получены результаты исследования ADAG (A_{1c} -Derived Average Glucose), установившего прямую зависимость уровней средней гликемии и Hb_{A1c} [13]. Исследование ADAG было профинансировано Американской диабетической ассоциацией и Европейской ассоциацией по изучению диабета. Исследование проводилось в 10 центрах и включало 507 человек: 268 больных СД1, 159 больных СД2 и 80 без диабета. Для подсчета средней гликемии использовались результаты суточного мониторирования гликемии в течение 2 дней (4 раза за 3 месяца) и 7-точечный гликемический профиль не менее 3 дней в неделю. Кроме того, определялся уровень HbA_{1c} через три месяца в центральной лаборатории.

Результаты исследования ADAG показали, что расчетный показатель средней гликемии по уровню гликированного гемоглобина, четко коррелирует с уровнем гликемии, полученным в результате повторных определений в течение 3

Таблица 3

Показатели Hb _{A1c} у больных СД по данным Регистра СД Московской области за 200∕ год						
Уровень Hb _{A1c} (%)	СД1		СД2		Всего	
	абс.	%	абс.	%	абс.	%
≥10	174	4,37	184	4,62	358	8,99
≤ 6,5	200	5,02	676	16,98	876	22
≤ 7,0	369	9,27	1287	32,33	1656	41,6

Таблица 4

Средние значения Hb _{Alc} (%) у больных СД2 в зависимости от пола и вида получаемой сахароснижающей терапии				
	Диета	ПССП	ПССП и инсулин	Инсулин
Мужской	6,57±0,17	7,46±0,09	8,18±0,15	7,68±0,14
Женский	6,63±0,09	7,30±0,03	8,07±0,08	7,89±0,09
Всего	6,61±0,08	7,34±0,03	8,10±0,07	7,84±0,08

месяцев. Была выведена простая математическая формула, позволяющая переводить показатель Hb_{A1c} в показатель средней гликемии (ммоль/л или мг/дл).

28,7 х HbA_{1c} – 46,7 = eAG (в мг/дл)

На основании результатов исследования ADAG, результаты Hb_{A1c} могут быть представлены в виде средней гликемии в ммоль/л. Возможно, представление показателя средней гликемии, рассчитанного на основании результата Hb_{A1c} , поможет врачу и больному лучше оценить степень компенсации сахарного диабета.

Таким образом, Hb_{A1c} является ключевым показателем в оценке компенсации углеводного обмена и его регулярное определение является неотъемлемым компонентом эффективной терапии сахарного диабета.

Таблица 5

Средние значения показателей Hb _{A1c} больных СД1				
с учетом пола и возраста				
	Пол	HbA _{1c} (%)		
Дети	Мужской	8,28±0,15		
	Женский	8,64±0,20		
	Всего	8,44±0,12		
Подростки	Мужской	8,56±0,23		
	Женский	9,15±0,26		
	Всего	8,84±0,17		
Взрослые	Мужской	8,02±0,08		
	Женский	7,80±0,08		
	Всего	7,91±0,06		

Литература

- Diabetes Control and Complications Trial Research Group: The effect of intensive diabetes treatment on the development and progression of long-term complications in insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. N Engl J Med 329:978–986, 1993.
- DCCT Research Group: The association between glycaemic exposure and long-term diabetic complications in the Diabetes Control and Complications Trial. Diabetes 44:968–983, 1995[Medline].
- UK Prospective Diabetes Study Group: Intensive blood-glucose control
 with sulphonylureas or insulin compared with conventional treatment and
 risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet
 352:837–853, 1988.
- American Diabetes Association: Standards of medical care in diabetes— 2008. Diabetes Care 2008;31(Suppl):S12–S54.
- AACE Diabetes Mellitus Clinical Practice Guidelines Task Force: American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Pract 2007;13(Suppl 1):4–68.
- IDF Clinical Guidelines Task Force: Global Guidelines for Type 2 Diabetes. Brussels: International Diabetes Federation, 2005.

- The Task Force on Diabetes and Cardiovascular Disease of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes: ESC/EASD Pocket Guidelines. 2007.
- ACCORD study Group. Effects of Intensive Glucose Lowering in type 2 Diabetes. N Engl J Med 2008;358:2545–2559.
- The ADVANCE collaborative Group. Intensive blood glucose control and vascular outcomes in patients with Type 2 Diabetes. N Engl J Med 2008;358:2560–2572.
- Koro CE, et al. Diabetes Care 2004; 27:17–20 Liebl A. Diabetologia; 2002; 45:S23–S28.
- 11. Liebl A. Diabetologia 2002; 45:S23-S28
- Ильин А.В. Уровень гликированного гемоглобина ключевой параметр контроля в лечении сахарного диабета и профилактике его осложнений. Лаборатория. №1, 2008.
- Nathan D M., KuenenJ, Borg R, Zheng H, , Schoenfeld D, Heine R Translating the A1C Assay Into Estimated Average Glucose Values Diabetes Care 31:1473–1478, 2008.