"Бюллетень радиационной медицины", 1965 год, № 2, стр. 132-138.

Функциональное состояние печени у лиц, имеющих контакт с аэрозолями плутония (Сообщение І. Фракционный состав сывороточных белков и реакция Вельтмана)

Токарская З.Б., Байсоголов Г.Д.

Обследование большой группы работников плутониевого производства обнаружило у них небольшое увеличение содержания альбуминов, β -глобулинов и уменьшение α - и γ -глобулинов, а также сдвиг коагуляционной ленты Вельтмана вправо, что отражает нарушение нормального соотношения белковых фракций сыворотки крови.

Functional state of liver by the persons contacting with plutonium aerosols

(Report I. Fraction compound of serum proteins and Weltman's reaction)

Tokarskaya Z.B., Baisogolov G.D.

By examination of a large group of the workers involved into plutonium production some increase in content of albumins, β -globulins, decrease of α - and γ -globulins as well as shift of coagulative Weltman's tenia to the right was observed what reflects a disruption of the normal relationship among protein fractions of blood serum.

В настоящее время хорошо известно, что распределение ²³⁹Pu в организме зависит от химической формы и путей его поступления. Поэтому у лиц, имеющих контакт с аэрозолями ²³⁹Pu (у которых радиоэлемент проникает в организм главным образом через дыхательные пути), на первом месте по количеству отложившегося изотопа в зависимости от его химической формы находятся легкие или скелет, а печень занимает второе или третье место [1]. Тем не менее функциональное исследование печени у этой группы лиц представляет несомненный интерес.

Литература, касающаяся функционального состояния печени при воздействии плутония, невелика. Так, в нескольких экспериментальных работах было показано, что при внутривенном введении 0,3-7 мккюри/кг у собак и кроликов наблюдается увеличение сывороточных трансаминаз, холестерина, сдвиги в составе сывороточных белков - уменьшение содержания альбуминов и увеличение - глобулинов [2, 3].

Нам известны клинические наблюдения [4], в которых у группы больных хронической лучевой болезнью, контактировавших с ²³⁹Pu, отмечено понижение антитоксической функции печени, изменение осадочных реакций (Вельтмана и Таката-Ара), повышение содержания общего холестерина и билирубина.

В настоящей работе представлены результаты обследования большой группы лиц, имевших контакт с аэрозолями ²³⁹Pu. Часть из них (61 %) соприкасалась с рядом химических соединений плутония различной растворимости (будет дальше характеризоваться как I группа), другая (30 %) - только с металлическим плутонием (дальше будет характеризоваться как II группа).

На основании радиометрических измерений трупов лиц, работавших в этих же условиях и погибших от разных причин, можно было считать, что у лиц I группы отложение 239 Pu во всем организме составляло десятые доли и единицы микрокюри. Помимо этого, они подвергались также внешнему γ -облучению, особенно существенному в первые годы работы, так что суммарная доза у значительной их части составила несколько сот рентген.

У лиц II группы отложение плутония соответствовало сотым и десятым долям микрокюри. Внешнее облучение у них было невысоким и обычно не превышало предельно допустимых уровней.

Все обследованные были молодого и среднего возраста (20-45 лет). Мужчин было 75%. В разработку не вошли лица, у которых имелись хронические заболевания печени и желчевыводящих путей, различные интоксикации или какие-либо другие нарушения, могущие влиять на функцию печени. Подавляющее большинство обследованных не предъявляло жалоб и не имело физикальных изменений со стороны печени.

Контрольная группа включала в себя по различным видам исследования 20-90 практически здоровых лиц, не работавших в сфере воздействия ионизирующей радиации.

Для оценки воздействия ²³⁹Pu на организм проводилось сравнение исследованных показателей I и II групп с контролем и между собой, так как по количеству и распределению отложившегося плутония эти группы существенно различаются. Кроме того,

мы пользовались показателем, который условно был назван "временем контакта с плутонием"¹.

По времени контакта все обследованные также были разбиты на две подгруппы: 1-4 года - 1-я подгруппа, 5-12 лет - 2-я подгруппа. Лица, входящие в 1-ю подгруппу, имели значительно меньшие количества инкорпорированного 239 Ри, так как в период начала их работы был введен респиратор ШБ-1 "Лепесток", задерживающий, по данным П.Ф.Воронина 2 , 99,1 % долгоживущей компоненты α -активных аэрозолей. Внешнее γ -облучение в этой группе было относительно небольшим, и суммарная доза колебалась от нескольких рентген до 30-40 р.

Результаты обработаны статистически с помощью критериев t и X^2 . Был принят 5%-ный уровень значимости.

Хорошо известно, что одним из важных показателей функционального состояния печени является количество общего белка сыворотки и отдельных его фракций. Общий белок определяли рефрактометрически, фракционный его состав - с помощью электрофореза на бумаге. Электрофоретическое разделение белков сыворотки проводилось в вероналмединаловом буфере с рН 8,6 (при напряжении 300 В в течение 6 ч). Электрофореграммы окрашивали амидошварцем и оценивали с помощью элюции и колориметрии (табл. 1).

Полученные результаты (табл. 1) свидетельствовали о сравнительно небольшом (всего на 4-8 % по отношению к контролю) увеличении количества альбуминов у мужчин как I, так и II группы и женщин II группы, причем мужчины 1-й подгруппы имели достоверное увеличение количества альбуминов, а 2-й подгруппы - лишь тенденцию к увеличению.

Количество α_1 -глобулинов у мужчин и женщин II группы было уменьшено на 11 и 28 % соответственно, у мужчин I группы имелась тенденция к уменьшению, причем у лиц 1-й подгруппы обнаружилось уменьшение на 14-20 %, а у лиц 2-й подгруппы сдвигов не имелось. Содержание α_2 -глобулинов было уменьшено у мужчин 1-й подгруппы и у женщин II группы.

Количество β-глобулинов у мужчин обеих групп было увеличено на 10-12 %, у женщин II группы существенно не отличалось от контроля, у женщин I группы была тенденция к увеличению. У лиц 1-й подгруппы отмечено достоверное увеличение, у лиц 2-й подгруппы - тенденция к увеличению количества β-глобулинов.

Количество γ -глобулинов у мужчин II группы статистически не отличалось от контроля, обнаруживая при этом некоторую тенденцию к повышению. У мужчин I группы отмечено снижение, более выраженное у лиц 1-й подгруппы. У жен-

щин обеих групп отличия от контроля были несущественными.

А/Г коэффициент у мужчин II группы не отличался от нормы, так как увеличению альбуминов сопутствовало нарастание некоторых фракций глобулинов. А/Г коэффициент у мужчин I группы был увеличен, так как при увеличении альбуминов в этой группе имело место уменьшение γ-глобулинов. У женщин обеих групп А/Г коэффициент существенно не отличался от нормы.

Количество общего белка у женщин и у мужчин I группы не отличалось существенно от нормы, так как сдвиги в отдельных фракциях были разнонаправленными. У мужчин II группы отмечено небольшое (на 4 % по сравнению с контролем) увеличение белка, обусловленное главным образом увеличением количества альбуминов.

Поскольку известно, что проба Вельтмана (широко распространенная в клинической практике) отражает соотношение белковых фракций сыворотки, сдвиги ее необходимо рассматривать в связи с изменением протеинограммы. Из таблицы 1 видно, что у мужчин и женщин II группы наблюдался сдвиг ленты вправо, у женщин II группы - тенденция к сдвигу вправо, у мужчин II группы не было существенных отклонений от нормы. Сдвиги, согласующиеся с предшествующими наблюдениями И.А.Вигман, очевидно, следует поставить в зависимость от изменения протеинограммы, в частности, от нарушения нормального соотношения между α - и γ -глобулинами.

При анализе изменений протеинограммы прежде всего обращает на себя внимание увеличение количества альбуминов в большинстве обследованных групп, которому сопутствует уменьшение α_1 -глобулинов и у ряда групп - α_2 -глобулинов. Известно, что синтез альбуминов и мелкодисперсных глобулинов происходит в печени и до определенного этапа осушествляется одним и тем же путем. Поэтому при ряде патологических состояний отмечается параллельное уменьшение альбуминов и увеличение α-глобулинов [5]. Наблюдаемое нами параллельное увеличение альбуминов и уменьшение α-глобулинов тоже, очевидно, можно поставить в связь с близостью их синтеза. Таким образом, причину увеличения количества альбуминов прежде всего можно видеть в изменении синтеза альбуминов в печени. В данном случае можно думать об усилении синтеза альбуминов как о проявлении некоторого раздражения печени. В пользу такого предположения говорит то, что этот сдвиг выражен ярче у лиц 1-й подгруппы. Однако то, что эти изменения одинаково проявляются у работников обеих групп, у которых депонирование ²³⁹Ри в печени различается в десятки и сотни раз, не позволяет с полной уверенностью остановиться на этом предположении и заставляет искать другие причины, которыми можно было бы объяснить увеличение содержания альбуминов. В этой связи обращает на себя внимание работа Л.Т.Пяй [6], в которой было показано, что при нормальных условиях легкие уменьшают высокое содержание альбумина и фибриногена в крови, оттекающей от печени, и тем самым нормализуют белковый состав крови. А так как депонирование ²³⁹Ри в легких у большинства

¹ Под этим термином понималось время, прошедшее с начала работы в условиях соприкосновения с ²³⁹Pu, независимо от того, продолжали ли обследованные лица работать в этих условиях или были в дальнейшем выведены. Этот показатель был введен потому, что из всех имевшихся в нашем распоряжении критериев оценки воздействия плутония время, прошедшее с начала работы (а следовательно, с момента инкорпорации изотопа), более всего должно характеризовать интегральную дозу, полученную в результате его попадания внутрь. ² Личное сообщение.

Таблица 1

Белковые фракции сыворотки (в г %) и проба Вельтмана у лиц I и II групп

Груп-	Время кон-	Общий белок					Альбу	/МИНЫ		α ₁ -глобулины				$lpha_2$ -глобулины			
па	такта, годы	\overline{X}	s \overline{X}	% изм.	р	\overline{X}	s $\overline{\pmb{X}}$	% изм.	р	\overline{X}	s X	% изм.	р	\overline{X}	s X	% изм.	р
Конт-																	
роль		7,72	0,057	-	-	4,36	0,059	-	-	0,43	0,016	-	-	0,56	0,020	-	-
і, м	1-12	7,76	0,046	+1	<0,7	4,57	0,053	+5	<0,05	0,40	0,011	-10	<0,2	0,55	0,015	-2	<0,8
II, м	1-12	8,00	0,053	+4	<0,01	4,55	0,054	+4	<0,05	0,38	0,014	-11	<0,05	0,55	0,019	-2	<0,8
І, ж	4-12	7,71	0,057	<1	<0,9	4,32	0,074	-1	<0,7	0,41	0,017	-5	<0,5	0,54	0,024	-4	<0,6
II, ж	4-12	7,78	0,151	+1	<0,7	4,73	0,156	+8	<0,05	0,31	0,033	-28	<0,02	0,39	0,050	-30	<0,01
І, м	1-4	7,67	0,056	-1	<0,6	4,63	0,078	+6	<0,01	0,37	0,018	-14	<0,02	0,51	0,020	-9	<0,1
l, м	5-12	7,83	0,063	+1	<0,7	4,48	0,070	+3	<0,7	0,43	0,014	0	-	0,57	0,023	+2	<0,5
II, M	1-4	7,94	0,077	+3	<0,02	4,61	0,074	+6	<0,01	0,34	0,017	-21	<0,001	0,48	0,024	-14	<0,02
II, M	5-12	8,05	0,073	+4	<0,01	4,48	0,074	+3	<0,3	0,43	0,020	0	-	0,61	0,023	+9	<0,2

Примечание. м - мужчины, ж - женщины.

88

Груп- па	Время кон- такта,	β-глобулины					ү-глобулины			А/Г коэффициент					Сдвиг пробы Вельтмана				
		$\overline{\mathbf{v}}$	s X	% изм.	n	$\overline{\mathbf{v}}$	- V	% изм.	n	v	- V	% изм.	р	Всего n	влево		вправо		n
	годы	٨	SA	70 PISIVI.	ρ	^	s X	70 VISIVI.	۲	^	SA	70 VISIVI.	ρ		n	%	n	%	
Конт-																			
роль		0,84	0,023	-	-	1,53	0,018	-	-	1,31	0,04	-	-	89	11	12	16	18	-
l, M	1-12	0,92	0,020	+10	<0,05	1,34	0,031	-12	<0,01	1,43	0,04	+9	<0,01	135	11	8	45	33	<0,05
II, M	1-12	0,94	0,025	+12	<0,02	1,58	0,039	+3	<0,5	1,32	0,04	+1	<0,9	128	17	13	30	23	0,5
1, ж	4-12	0,90	0,026	+7	<0,1	1,54	0,043	<1	<0,9	1,25	0,05	-4	<0,5	72	2	3	27	38	<0,01
П, ж	4-12	0,77	0,109	-8	<0,3	1,58	0,102	+2	<0,7	1,55	0,15	+18	<0,1	11	0	-	4	36	0,2
І, м	1-4	0,88	0,031	+5	<0,3	1,28	0,036	-16	<0,001	1,52	0,06	+16	<0,01	61	6	10	20	33	<0,05
І, м	5-12	0,95	0,025	+13	<0,01	1,40	0,040	-9	<0,05	1,33	0,05	+2	<0,1	74	5	7	25	34	<0,05
II, M	1-4	0,92	0,033	+10	<0,1	1,59	0,050	+4	<0,1	1,38	0,04	+5	<0,1	66	10	15	17	26	<0,3
II, M	5-12	0,97	0,033	+15	<0,01	1,56	0,055	+2	<0,7	1,25	0,06	-5	<0,4	62	7	11	13	21	<0,7

Примечание. 1. % изм. =
$$\frac{(\overline{X} - \overline{X}_{контр})}{\overline{X}_{контр}} \cdot 100$$
,

2. п - число исследований.

обследованных лиц более существенно, чем в печени, и в данном случае именно легкие являются критическим органом, то можно предполагать различные нарушения их функции. Следовательно, другой причиной, обусловливающей увеличение количества альбуминов, может быть нарушение нормальной регуляторной функции легких в отношении белкового состава плазмы. Ввиду того, что обнаруженные нами сдвиги в содержании альбуминов больше выражены у лиц 1-й подгруппы, можно считать, что они не отражают накопления интегральной дозы, и поэтому связывать их с величинами доз не следует. Вероятно, они являются проявлением одной из ранних реакций организма на действие небольших доз радиации.

Увеличение β-глобулинов, отмеченное у работников обеих групп и выраженное больше у лиц с длительным контактом, очевидно, связано с гиперхолестеринемией, наблюдающейся у этого контингента лиц [7]. Известно, что при увеличении содержания холестерина в сыворотке он главным образом связывается β-фракцией глобулинов [8].

Обращает на себя внимание уменьшение углобулинов на 9-16 % от исходного у мужчин І группы и отсутствие отчетливых сдвигов в содержании γ-глобулинов у лиц II группы. Уменьшение у-глобулинов отмечалось нами и ранее [9] и связывалось тогда с угнетением их синтеза в кровотворной системе в результате воздействия внешнего излучения. Очевидно, что и в данном случае можно было предположить то же самое, так как внешнее облучение, получаемое лицами І

группы, намного превосходит облучение II группы. Так как помимо воздействия ²³⁹Pu, попавшего внутрь организма, обследованный контингент подвергался порой значительному внешнему уоблучению, необходимо было выяснить зависимость исследованных показателей от дозы внешнего облучения. Сравнение групп с различными суммарными дозами не выявило сколь-нибудь существенных различий ни по одному из показателей. Тем не менее отвергать (на основании такого анализа) влияние внешнего у-облучения на состав сывороточных белков вообще нельзя, так как мы имеем дело с суммарной дозой, полученной главным образом много лет назад. Однако можно заключить, что суммарная доза внешнего облучения не определяла обнаруженные нами изменения.

Имея в виду, что сдвиги в содержании альбуминов и ү-глобулинов были выражены меньше у лиц 2-й подгруппы, мы решили проверить, не связано ли это с так называемым выводом, т. е. прекращением работы в условиях контакта с аэрозолями плутония и внешним у-облучением. С этой целью лица I и II групп, имеющие один и тот же контакт (5-12 лет), были разбиты также на две подгруппы: работающих в настоящее время в условиях, связанных с возможностью внешнего у-облучения и попадания внутрь организма аэрозолей плутония, и не работающих в этих условиях в течение 3 лет и более (табл. 2).

Таблица 2 Содержание альбуминовой и у-глобулиновой фракции сыворотки крови (в г %) у работающих и выведенных мужчин

Группа	n		Альбумины		ү-глобулины				
Труппа	"	\overline{x}	s x	р	\overline{x}	S X	р		
Контроль	56	4,36	0,059	-	1,53	0,048	-		
I работающие	30	4,48	0,109	<0,3	1,38	0,068	0,001		
I выведенные	17	4,57	0,100	<0,1	1,50	0,098	<0,8		
II работающие	16	4,54	0,200	<0,5	1,70	0,160	0,3		
II выведенные	10	4,41	0,140	<0,7	1,44	0,147	<0,7		

Как видно из таблицы 2, в содержании альбуминов у работающих и выведенных мужчин существенной разницы не было. Фракция ү-глобулинов у работающих І группы была снижена, а у работающих II группы имела тенденцию к повыше-

Приведенные данные позволяют считать, что если сдвиги в содержании альбуминов не связаны с внешним облучением, то изменения в содержании ү-глобулинов, очевидно, обусловлены воздействием внешнего облучения. Причем у лиц I группы, где доза внешнего облучения значительно выше, отмечается подавление синтеза ү-глобулинов в костном мозгу, а у лиц II группы, где дозы ниже, раздражение клеток костного мозга и некоторое усиление синтеза.

Хорошо известно, что на состояние печени большое влияние оказывают хлорзамещенные углеводороды. По данным санитарно-гигиенической характеристики условий труда обследованного контингента, на некоторых рабочих местах у лиц обеих групп наблюдалось превышение в несколько раз предельно допустимой дозы четыреххлористого углерода и дихлорэтана. Для решения вопроса, не являются ли обнаруженные сдвиги результатом воздействия хлорзамещенных углеводородов на печень, из общего количества обследованных была выделена группа лиц, работавших в условиях соприкосновения с хлорзамещенными углеводородами. Содержание альбуминов, характеризующее одну из наиболее уязвимых функций печени при действии четыреххлористого углерода, а именно белково-синтетическую, у работающих с углеводородами существенно не отличалось от показателей общей группы.

Таким образом, мы не получили данных, позволяющих говорить о воздействии в наших условиях четыреххлористого углерода на состав сывороточных белков.

Выводы

- 1. У лиц, работающих в условиях воздействия аэрозолей 239 Pu и внешнего γ -облучения, обнаружено небольшое увеличение содержания альбуминов и уменьшение α -глобулинов. Эти сдвиги, очевидно, могут быть связаны с инкорпорацией 239 Pu в печени и легких.
- 2. У обследованных лиц было обнаружено увеличение содержания β -глобулинов, что может быть поставлено в связь с нарушением жирового обмена.
- 3. У группы лиц, работающих в условиях более высокой α -активной загрязненности и более высокого внешнего γ -облучения, отмечено уменьшение содержания γ -глобулинов, связанное, повидимому, с воздействием внешнего γ -облучения.
- 4. У этой группы лиц наблюдается сдвиг коагуляционной ленты Вельтмана вправо, что отражает нарушение нормального соотношения белковых фракций сыворотки крови.

Литература

- **1. Плотникова Л.А.** Распределение ²³⁹Pu в организме человека. Бюлл. рад. мед., 1965, N 1a, стр. 9.
- Cochrah T.H., Yee W.S., Stover B.Y., Taylor G.N. Liver Injury in Beagles with ²³⁹Pu; Distribution, Dosage, Damage. Health Physics, 1962, 8, p. 699.
- **3. Елкина Н.И., Токарская З.Б.** К вопросу о патохимии печени при поражении ²³⁹Pu. Вопр. мед. химии, 1963, IX, вып. 2, стр. 154.
- Студеникина Л.А. Функциональное состояние печени при хроническом поражении плутонием в сочетании с общим внешним облучением. Бюлл. рад. мед., 1959, N 2a, стр. 122.
- Родионов В.М., Успенская В.Д., Замятина О.Г. Влияние общего облучения R-лучами на восстановление сывороточных белков у собак после кровопотери. Вопр. мед. химии, 1958, IV, вып. 5, стр. 327.
- Пяй Л.Т. К участию легкого в регуляции белкового состава плазмы крови. Пат. физиол. 1960, N 6, стр. 45
- Токарская З.Б., Крутилина И.Ф. О некоторых показателях жирового обмена у работников радиохимического производства. Бюлл. рад. мед., 1963, N 1a. стр. 33.
- 8. Fishberg A.M., Friedfeld L. Beta-Hyperglobulinemia produced by cholesterol feeding in the rabbit. Proc. Soc. exp. Biol. a. Med., 1950, 75, p. 301.
- Токарская 3.Б., Матвеенко Е.Г. Белковые фракции сыворотки крови у больных хронической лучевой болезнью в отдаленные сроки. Бюлл. рад. мед., 1961, N 2a, стр. 140.