УДК 612.117.7+616. 155.392

В. Б. Матюшичев, В. Г. Шамратова

ЭЛЕКТРОФОРЕТИЧЕСКАЯ ПОДВИЖНОСТЬ ЭРИТРОЦИТОВ КРОВИ ПРИ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ

Санкт-Петербургский государственный университет, кафедра биохимии биолого-почвенного факультета

Информация об электрофоретической подвижности эритроцитов (ЭФПЭ) — показателе, косвенно определяющем поведение этих клеток в сосудистом русле, их деформируемость, агрегатную устойчивость, реологические характеристики крови и интенсивность микроциркуляции в капиллярах [6], представляет большой научный и клинический интерес. В силу своей высокой стабильности и исключительной важности для жизнедеятельности организма этот параметр способен стать чувствительным и объективным индикатором микроизменений в состоянии эритроцитов и окружающей их плазмы при тех или иных заболеваниях [4]. В свою очередь информация о поведении ЭФПЭ при патологических нарушениях может быть использована для уточнения и детализации отдельных звеньев контроля электрокинетических свойств эритроцитов. Поскольку механизмы регуляции ЭФПЭ до сих пор окончательно не выяснены, в настоящей работе авторы изучали ее поведение в норме и при артериальной гипертензии.

Материал и методика исследования. Обследовали группу студентов (n = 20) обоего пола (10+10) в возрасте 17-19 лет, с первичной артериальной гипертензией — при артериальным давлении, хронически повышающимся сверх пограничного уровня 140/90 мм. Контрольную группу составили 49 клинически здоровых студентов того же возраста (25 мужчин, 24 женщины). В периферической крови обследуемых на гематологическом анализаторе «Coulter» (Франция) определяли концентрацию эритроцитов и ретикулоцитов, среднюю концентрацию и среднее содержание гемоглобина (1200) в эритроците, лейкоцитарную формулу крови. Для измерения ЭФПЭ 12000, мл крови разбавляли (12000) мл фосфатным буфером, рН 12001, измерения проводили при 12002 с на микроскопической установке «Пармоквант-12002», в автоматическом режиме. По результатам сканирования перемещений клеток при микроэлектрофорезе на базе 12003 показаний индивидуальной подвижности эритроцитов в каждой из анализируемых проб производили расчеты средних ЭФПЭ (12002) (12003) м 12004 и 12005 (12003) м 12006 и в целом по группам. Обработку данных по схемам корреляционного и факторного анализа выполняли с использованием пакета программ Statistica.

Результаты исследования и их обсуждение. Полученные результаты показали, что реакция ЭФПЭ на артериальную гипертензию выражается прежде всего в достоверном снижении средней величины признака (на 3,1 %). Столь незначительные сдвиги казалось бы не заслуживают внимания. Однако это не так, поскольку ЭФПЭ относится к числу наиболее жестких констант внутренней среды организма, в силу чего даже такие непривычно малые отклонения могут иметь существенные физиологические последствия. Тем не менее

отсутствие значительных изменений средней величины ЭФПЭ наводит на мысль о том, что патологический процесс не затрагивает мембранные функции эритроцитов. Но последнее представляется маловероятным в силу неизбежно возникающих при патологии изменений во внутренней среде организма, априори отражающихся и на свойствах мембран. Существует даже гипотеза, согласно которой причиной первичной гипертензии является повреждение клеточных мембран, включая эритроцитарные [5]. Поиск рационального объяснения противоречивости подобной ситуации подводит к заключению о необходимости использования иных критериев в оценке поведения ЭФПЭ. По-видимому, валовый подход с учетом только усредненного показателя ЭФПЭ нивелирует качественные сдвиги, происходящие в отдельных субпопуляциях клеток, и поэтому не позволяет судить о реальном состоянии электрокинетических параметров эритроцитарных популяций у больных.

Для уточнения механизмов, лежащих в основе наблюдаемых изменений, с помощью факторного анализа прослежены взаимосвязи параметров распределения ЭФПЭ с комплексом показателей, отражающих особенности клеточного состава красной и белой крови в норме и при артериальной гипертензии. Полученные результаты представлены в таблице. Как следует из таблицы, в норме за состояние электрокинетического гомеостаза отвечают, видимо, факторы F_1 и F_3 . Первый фактор, в структуру которого с высокими положительными нагрузками вошли общая концентрация гемоглобина в крови и среднее содержание этого пигмента в отдельном эритроците, очевидно, можно было бы интерпретировать как фактор функциональной ценности эритроцитов, поскольку с гемоглобином связана основная физиологическая функция эритроцитов — транспорт дыхательных газов. Однако такой трактовке противоречит отрицательная корреляция с фактором средней ЭФПЭ, подтверждающая данные [7] о том, что чрезмерная гемоглобинизация эритроцитов ухудшает их реологические свойства. Действительно, глубинная структура фактора такова, что чем выше концентрация гемоглобина в крови и в отдельных эритроцитах, тем более ослаблена соответствующая функция организма. По всей видимости, этот фактор отражает в первую очередь динамическое равновесие в популяции между клетками с оптимальными реологическими свойствами (высокий электрокинетический потенциал) и слабой кислородтранспортной функцией (низкая концентрация гемоглобина), и наоборот.

Существенно, что отмеченный характер взаимоотношений между этими важнейшими параметрами красной крови у здоровых людей определяется возрастной структурой периферического звена эритрона. Молодые эритроциты обладают повышенным зарядом [4] и пониженной внутриклеточной концентрацией гемоглобина [7]. По мере старения циркулирующих эритроцитов в них увеличивается концентрация Нb, снижается электрокинетический потенциал клеток, их деформируемость и, соответственно, возрастает способность к агрегации [1]. Как показывает анализ корреляций, на уровне общей совокупности это выражается в повышении концентрации Hb с уменьшением доли субпопуляций клеток с высокой подвижностью.

Фактор F_3 в факторной структуре показателей здоровых людей — это, видимо, фактор поддержания устойчивости среднего уровня ЭФПЭ путем перераспределения клеток в совокупности. Сохранение относительной стабильности ЭФПЭ достигается за счет изменения баланса субпопуляций с разными электрокинетическими свойствами (колебания As) и варьирования степени гетерогенности популяции. При этом с указанным фактором достоверно коррелирует как возрастание «электрокинетического» анизоцитоза (увеличение SD), так и общей неоднородности качественного состава клеток (уменьшение Ex). Последнее считается важным условием сохранения устойчивости биосистем [2].

Факторные нагрузки показателей крови студентов в норме и при артериальной гипертензии

	Wakioph	іыс наі рузки	показателен	крови студент	риыс нагрузки показателей кроби студентов в норме и при артериальной гипертензии	при артериал	ьнои гипсрісн	ЗИИ	
			Но	Норма			Артериальная гипергензия	гипертензия	
	признаки	펀	${ m F}_2$	F_3	${ m F_4}$	\mathbb{F}_{1}	${ m F}_2$	F_3	${ m F_4}$
	M	*69'0-	-0,05	-0,10	-0,21	0,03	0,45	*69'0-	-0,01
	Me	-0,48	0,37	0,55	-0,20	*58,0	-0,15	0,22	0,17
ЭФПЭ	As	0,01	0,41	*69'0	-0,05	-0,26	0,13	*0,70	-0,31
	Ex	0,46	-0,14	-0,61*	0,15	-0,62*	-0,39	0,19	-0,42
	SD	0,45	60,0	*67*	0,11	-0,45	-0,47	-0,05	0,18
Концен	Концентрация НЬ	0,81*	0,41	-0,01	-0,06	-0,36	-0,25	0,62*	0,03
Содерж	Содержание Нb в эритроците	0,76*	0,01	0,03	-0,22	-0,33	-0,26	*09'0	0,05
Ретикулоциты	лоциты	-0,37	0,02	0,31	-0,25	-0,36	0,28	0,30	*99'0
Эритроциты	циты	0,57	0,52	-0,02	0,12	-0,71*	-0,23	0,19	-0,11
Лейкоциты	иты	0,35	-0,33	0,02	-0,52	-0,63*	-0,10	0,12	0,01
ĄII	сегментоядерные	0,28	-0,85*	0,20	-0,04	-0,47	0,74*	0,24	0,38
)	палочкоядерные	0,29	0,12	-0,12	-0,82*	*99'0	-0,54	0,22	0,12
Лимфоциты	циты	-0,30	0,77*	-0,23	0,08	-0,08	-0,32	-0,27	-0,51
Моноциты	ИТЫ	-0,24	0,75*	-0,27	0,06	0,10	-0,46	0,66*	-0,10
Эозинофилы	филы	-0,28	-0,38	0,26	0,49	0,77*	-0,38	0,26	0,28
Доля дь	Доля дисперсии, %	23	21	15	11	26	19	18	11
	-			,					

НФ — нейтрофилы; * — достоверная корреляция признака с фактором, $p \le 0,05$.

Заметные изменения в динамике интегральных гомеостатических факторов происходят при артериальной гипертензии. Здесь удельный вес фактора, координирующего взаимоотношения микрореологических и кислородтранспортных параметров эритроцитов, существенно снижается. При этом отмечается ослабление влияния на него функции газообмена (средняя концентрация Нb и среднее содержание Hb в отдельном эритроците) на фоне сохранения доли вклада реологической составляющей (средняя ЭФПЭ). Более того, фактор дополняется параметром, описывающим форму гистограмм (As распределения), что свидетельствует о подключении к контролю подвижности клеток механизма перераспределения эритроцитов с разными электрокинетическими свойствами, а также содержанием моноцитов.

При артериальной гипертензии место первого, наиболее емкого фактора, занял фактор реологической устойчивости крови. Наряду с медианой ЭФПЭ, с ним отрицательно связан коэффициент Ех распределения эритроцитов по ЭФП. В этом случае рост гетерогенности популяции эритроцитов можно рассматривать как адаптивную реакцию, направленную на поддержание оптимального состояния функциональной системы. В то же время, судя по структуре фактора, на суспензионной устойчивости крови негативно сказывается возрастание концентрации циркулирующих клеток крови, причем не только эритроцитов, но и лейкоцитов. Кроме того, на состояние этой функции влияет активность лейкопоэза (содержание палочкоядерных лейкоцитов) и содержание в крови эозинофилов. У обследуемых имело место достоверное повышение в крови уровня палочкоядерных лейкоцитов, эозинофилов и моноцитов, т. е. концентрации тех клеточных элементов, которые, согласно факторным структурам, при артериальной гипертензии активно вмешиваются в регуляцию электрокинетических параметров эритроцитов.

Очевидно, при артериальной гипертензии физиологические механизмы обеспечения биоэлектрического гомеостаза испытывают определенное напряжение, о чем свидетельствует как достоверное снижение средней величины ЭФПЭ (на 3,1 %) и возрастание роли факторов, контролирующих электрокинетические свойства эритроцитов, так и усиление регуляторных влияний со стороны других звеньев системы крови. Такое преобразование становится понятным, если принять во внимание, что состояние кровотока в системе микроциркуляции определяется не только микрореологическими свойствами клеток крови, но и диаметром сосудов. В связи с этим при артериальной гипертензии, при которой реактивность сосудов может нарушаться, роль агрегатной устойчивости эритроцитов — преобладающих по численности клеток крови — значительно возрастает. При этом чрезмерно высокая концентрация клеток не только красной, но и белой крови способна оказывать, как следует из особенностей факторной структуры, отрицательное влияние на реологические свойства эритроцитов и состояние этой функции организма в целом.

Итак, при артериальной гипертензии, несмотря на воздействия, сдвигающие равновесие внутренней среды организма, средняя ЭФПЭ в целом поддерживается на уровне, близком к физиологическому. Изучение факторных структур, причастных к регуляции электрокинетических свойств эритроцитов, показало, что в норме характеристики ЭФПЭ варьируют относительно независимо от других параметров крови и контроль электрокинетических свойств эритроцитов осуществляется преимущественно за счет механизма перераспределения клеток внутри популяции. При патологии к нему могут подключаться новые регуляторные звенья. Иначе говоря, при недостаточной эффективности контроля взаимоотношений внутри функциональной системы «собственными средствами» этот контроль дополняется вспомогательным влиянием «внешних» по отношению к эритроцитам элементов системы крови [3]. Тем не менее при артериальной гипертензии эти

корректирующие влияния не могут полностью предотвратить снижение среднего уровня подвижности эритроцитов в электрическом поле. Таким образом, оказывается, что в случае артериальной гипертензии, протекающей даже в сравнительно легкой форме, вследствие некоторого уменьшения ЭФПЭ, помимо общеизвестных негативных соматических влияний, происходит еще и ухудшение суспензионных свойств крови, неизбежно ведущее к появлению микроциркуляторных расстройств со всеми сопровождающими их отрицательными последствиями для нормальной жизнедеятельности организма.

Литература

- 1. Γ ильмутдинов В. Γ . Электрокинетические характеристики клеток крови и их взаимосвязь с другими гематологическими показателями в норме и патологии: Автореф. дис. ... д-ра биол. наук. Казань, 1994. 32 с.
- 2. *Емельянов И. Г.* Разнообразие и устойчивость биосистем // Усп. совр. биол. 1994. № 3. C.304-318.
- 3. *Матюшичев В. Б., Шамратова В. Г., Музафарова Д. А.* Взаимосвязи количества лейкоцитов и параметров распределения объема клеток белой крови человека //Физиология человека. 2001. № 1. С. 122–126.
- 4. *Мирошников А. И., Фомченков В. М., Иванов А. Ю.* Электрофизический анализ и разделение клеток. М.,1986.
- 5. *Постнов Ю. В., Орлов С. Н.* Первичная гипертензия как патология клеточных мембран. М., 1987. С. 172–176.
- Чижевский А. Л. Биофизические механизмы реакции оседания эритроцитов. Новосибирск, 1980
- 7. Clan L., Clan A., Waye J. Should we screen for globin gene mutation in blood sumples with mean corpuscular volume greater than 80 fl in areas with a high prevalence of thalassemia // J. Clin. Pathol. 2001. N 4. P. 317–320.