ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

© БОЧАРОВ С.Н., ПДАХОТИНА Е.Н., ГОЛУБ И.Е., ДЕНИСОВА М.А., БОЧАРОВА Ю.С. – 2008

ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ДРЕНАЖНОЙ КРОВИ

С.Н. Бочаров, Е.Н. Плахотина, И.Е. Голуб, М.А. Денисова, Ю.С. Бочарова

(ГУ Научный центр реконструктивной и восстановительной хирургии ВСНЦ СО РАМН, директор — член-корр. РАМН проф. Е.Г. Григорьев; Иркутский государственный медицинский университет, ректор — д.м.н., проф. И.В. Малов)

Резюме. В статье представлены результаты исследования дренажной крови, свидетельствующие о ее идентичности с венозной кровью пациента и безопасности ее возврата в послеоперационном периоде. **Ключевые слова:** дренажная кровь, цитолиз, гемолиз, гемостаз.

EFFICIENCY OF USE OF DRAINAGE BLOOD

S.N. Bocharov, E.N. Plakhotina, I.E. Golub, M.A. Denisova, Y.S. Bocharova (Scientific Center of Reconstructive and Restorative Surgery, Irkutsk State Medical University)

Summary. The article presents the results of research of drainage blood which proves its identity with patient's venous blood and safety of its application in postoperative period. **Key words:** drainage blood, cytolysis, haemolysis, haemostasis.

Метод послеоперационного сбора дренажной крови и попытка ее реинфузирования известен давно, однако сдерживающим фактором широкого его применения являлись недостаточная стерильность дренажного отделяемого, наличие примесей и состав, который значимо отличался от цельной крови пациента [1,2]. Тем не менее, с развитием новых технологий и появлением на медицинском рынке новых дренажных систем и устройств для сбора крови, это направление получило, практически, второе рождение. Новые устройства, в отличие от традиционных дренажных систем, имеют многокаскадный фильтр, позволяющий очищать дренажное отделяемое от примесей и включений, и имеют гарантированную производителем стерильность [1,3,6,7].

Данные обстоятельства явились побудительным мотивом для изучения эффективности использования дренажной крови в комплексе послеоперационного лечения у больных, перенесших тотальное эндопротезирование тазобедренного сустава.

Для реализации поставленной цели нами решались следующие задачи:

- 1. Определение бактериальной обсемененности дренажной жидкости.
- 2. Изучение клеточного состава дренажного отделяемого в двух порциях: в контейнере и после прохождения каскада фильтров.
- 3. Исследование биохимических констант дренажного содержимого также в двух порциях.
- 4. Определение ферментативной активности и степени проявления гемолиза дренажной крови в этих же порциях.
- 5. Изучение влияния перелитой дренажной крови на качественный и количественный состав крови и систему гемостаза больного.

Материалы и методы

Исследования выполнены у 42 пациентов (17 мужчин и 25 женщин), которым выполнено безцементное эндопротезирование тазобедренного сустава и в раннем послеоперационном периоде однократно возвращена дренажная кровь. Средний возраст составил 54,6 (28; 77) года.

Объем интраоперационной кровопотери составил 300 (255; 400) мл и на интраоперационном этапе возмещался аутологичной свежезамороженной плазмой в соответствии с собственной программой восполнения кровопотери (патент № 2195169 от 27.12.2002). Возврат дренажной крови осуществляли через 5 часов после установки дренажной системы Handy Vac, объем составил 575 (325; 700) мл. Общий объем послеоперационной кровопотери — 725 (550; 1050) мл, при этом после реинфузии по дренажам дополнительно было получено еще 185 (135; 350) мл геморрагического отделяемого в течение 12 часов. Аутоэритроцитарная масса была использована в плановом порядке в течение первых 5 часов после операции до возврата дренажной крови.

В послеоперационном периоде исследован клеточный, биохимический состав, ферментативная активность, степень гемолиза, уровень лактата как дренажной, так и венозной крови пациентов до реинфузии и на 1,3,5,7 и 14 сутки после реинфузии. Состав дренажной крови исследовали в двух порциях: непосредственно из контейнера и после прохождения каскада фильтров.

Полученные результаты исследований подвергнуты статистической обработке с помощью программы «Биостат» и «Microsoft Excel - 2000». В случае параметрического распределения массива данных определяли среднее значение (М) и стандартное отклонение среднего (m). В условиях непараметрического распределения — медиану (М), и квартили (Р75 и Р25). Для сравнительного анализа результатов внутри группы применяли дисперсионный анализ повторных измерений в случае нормального распределения, в других случаях использовали критерий Фридмана.

Значимыми различия признавались при р < 0,05.

Результаты и обсуждение

По результатам выполненных исследований установлено, что дренажное содержимое, по своему составу было практически идентично венозной крови пациента после выполненной эксфузии (табл. 1).

Количество эритроцитов в первой и второй порциях дренажной крови не отличалось от такового в венозной крови перед реинфузией.

Более значимые изменения претерпевали концентрация гемоглобина и гематокритное число. Уровень гемоглобина в обеих порциях дренажной крови был ниже, чем в венозной крови.

Динамика гематокрита была идентична изменениям концентрации гемоглобина. В первой порции дренажной крови гематокрит составил 24 (18; 28)% и был ниже чем в венозной крови. Во второй порции его ве-

личина равнялась 36 (33; 39)% и практически не отличался от венозной.

Уровень гемолиза дренажной крови также оказался незначимым, составил 0.6 ± 0.2 г/л и не превышал до-

В первые сутки наблюдения также не выявлено значимого снижения количества эритроцитов по сравнению с предоперационными показателями и на 14 сутки после операции их количество было практически иден-

Таблица 1 Сравнительная характеристика состава венозной крови и дренажного отделяемого

Показатель	исходно	после забора	дренаж 1	дренаж 2
Эритроциты (х1012/л)	4,2 (4,2;4,4)	4,2 (4;4,2)	3,4 (3,1;3,6)	3,9 (3,5;4)
Гемоглобин (г/л)	138 (134;141)	133 (130;134)	109 (98,5;120)	112 (103;129)
Тромбоциты (х10 ⁹ /л)	235 (229;249)	238 (228;247)		
Гематокрит (%)	48 (44;50)	40 (37;44)	24 (18;28) *	36 (33;39)
АлАТ (нмоль/(с. л)	11 (7,8;15)	13 (9,8;22)	133 (104;171)	97,3 (67,9;150)*
АсАТ (нмоль/(с. л)	27 (21;31)	25 (20;33)	416 (346;697)	427 (223;667) *

Примечание: *- p < 0,05 в сравнении с исходными величинами.

тично предоперационному уровню.

Также в течение первых трех суток послеоперационного периода, концентрация гемоглобина венозной крови была ниже исходной, одна-

Таблица 2

ко она не выходила за пределы физиологической нормы, а с 7 суток после операции возвращалась к исход-

пустимую величину. Переливание такой крови не сопровождалось активацией внутрисосудистого гемоли-

за, что подтверждается нормальной концентрацией билирубина крови.

Основные биохимические показатели: концентрация общего белка крови, холестерина, креатинина, глюкозы в обеих порциях дренажной

Эффективность и безопасность возврата дренажной крови

Показатель	исходно	1 сутки	5 сутки	14 сутки
Эритроциты (х1012/л)	4,2 (4,2;4,4)	3,7 (3,6;4,1)	3,7 (3,4;3,7)	3,9 (3,7;4,1)
Гемоглобин (г/л)	138 (134;141)	122 (114;126)	118 (106;123)	118 (114;123)
Тромбоциты (х1000)	235 (229;249)	220 (205;227)	226 (219;240)	231 (220;238)
Гематокрит (%)	48 (44;50)	33 (30;36)	30 (28;35)	44 (37;47)
АлАТ (нмоль/(с. л)	11 (7,8;15)	16 (15;20)	21 (12;26)	16 (14;22)
АсАТ (нмоль/(с. л)	27 (21;31)	71 (48;85)	50 (41;57)	31 (25;38)

крови не имели значимых различий и не отличались от таковых в венозной крови пациентов.

Повышение концентрации трансаминаз в дренажной крови отражало цитолиз и связано, на наш взгляд, как с выполнением самой операции, так и перемещением и временным хранением дренажной крови в контейнере. Повышение трансаминаз более выражено в первой порции дренажной крови, чем во второй. Однако следует отметить, что это не имело какой-либо клинической или лабораторной значимости в условиях переливания дренажной крови. Концентрация трансаминаз в венозной крови пациентов на всех этапах исследования не превышала допустимых величин.

Обращает на себя внимание полное отсутствие тромбоцитов в дренажной крови. Тем не менее, использование дренажной крови не отразилось на функциональном состоянии системы гемостаза, что подтверждено как гемограммами, так и коагулологическими исследованиями.

Эффективность и безопасность возврата дренажного содержимого подтверждается как клинически, так и лабораторными исследованиями, результаты которых отражены в таблице 2.

ЛИТЕРАТУРА

Перельман С. Практические вопросы интраоперационперельман С. Практические вопросы интраоперационного сбережения крови: роль анестезиолога // Бескровная хирургия на пороге XXI века — Современные взгляды на гемотрансфузионную терапию: матер. междунар. симп. — СПб., 1999. — С.35. Шевченко Ю.Л., Шабалин В.Н., Заривчацкий М.Ф. и др. Руководство по общей и клинической трансфузиоло-

ным величинам.

С 7 суток послеоперационного периода гематокритное число венозной крови практически возвращалось к исходному, предоперационному значению.

Эффективность протезирования кислородно-транспортной функции крови при переливании дренажной крови подтверждается отсутствием молочно-кислого ацидоза на всех этапах исследования. В обеих порциях дренажной крови уровень лактата был в пределах допустимых величин и соответственно составил 1,23±0,43 и $1,09\pm0,21$ ммоль/л.

Таким образом, опыт использования дренажной крови, свидетельствует об эффективности и безопасности ее использования в программе восполнения кровопотери, что, дополнительно подтверждено бактериологическими исследованиями дренажной крови. По биохимическому и клеточному составу она практически идентична (кроме тромбоцитов) крови пациента, а ее применение не вызывает повреждения системы гемостаза, транскапиллярного обмена, обеспечивает эффективное протезирование кислородно-транспортной функции крови и не провоцирует активации внутрисосудистого гемолиза.

гии. — СПб.: ООО «Изд-во Фолиант», 2003. — 608 с. Люляева О.Д., Кузнецов Н.А. Технология реинфузии с применением одноразовой емкости «PORTEX» // Вестник службы крови России. — 2001. — № 2. — С.28-30. Evans B.E. Local hemostatic agents (and techniques) // Scand J. Haematol. — 1984 (suppl 40). — № 33. — P.417. Glover J.L., Broadie T.A. Intraoperative autotransfusion // World J. Surg. — 1987. — № 11. — P.60.

Адрес для переписки:

664003 г. Иркутск, ул. Борцов Революции, 1.

д.м.н., профессор Бочаров Сергей Николаевич. Тел. (3952) 29-03-68. ars-nataliya@yandex.ru