состояния внутренних органов. При стрептококкозе наиболее характерные патологоанатомические изменения обнаруживаются в селезенке в форме спленомегалии и каучукоподобной консистенции.

ЛИТЕРАТУРА. 1. Есепенок В.А., Горбатова Х.С. Этиология, патогенез, лечение и профилактика стрептококкозов (современный взгляд). Ветеринарный консультант. 2006. №10 (125) май. 2. Цветков Е.И. Энтерококковая (диплококковая) септицемия телят, ягнят, поросят и жеребят. М.: 2005.-250 с.

ПАТОМОРФОЛОГИЧЕСКАЯ ДИАГНОСТИКА СТРЕПТОКККОЗА ТЕЛЯТ

Малаткин И.И., Латыпов Д.Г. Резюме

В работе изложены характерные патологоанатомические изменения органов телят при стрептококкозе. Установлено, что для своевременной диагностики стрептококкоза молодняка следует проводить полное патологоанатомическое вскрытие павшего животного, с детальным исследованием состояния селезенки, позволяющее на месте поставить диагноз.

PATHOMORPHOLOGICAL DIAGNOSIS OD STREPTOCOCCOSIS IN CALVES

Malatkin I.I., Latypov D.G. Summary

The paper shows characteristic pathologoanatomic changes of calves organs and tissues at streptococcosis. It was established that at modern streptococcosis diagnosis there is a need in animal's full pathologoanatomic post-mortem examination, which permits to make a detailed investigation of the spleen with further final diagnosis.

УДК 619:611.34:.636.

АПИФИТОКОМПОЗИЦИИ ДЛЯ ВОССТАНОВЛЕНИЯ ИММУНОМОРФОЛОГИЧЕСКИХ СТРУКТУР ЛИМФОИДНЫХ ОРГАНОВ

Маннапова Р.Т. – д.б.н., профессор; *Ильясова 3.3. ФГБОУ ВПО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева» *ФГБОУ ВПО «Башкирский ГАУ»

Ключевые слова: мёд, лимфоидный, фолликул.

Key words: honey, lymphoid, follicle.

Целью работы явилось – изучить влияние медовых композиций с пшеничными отрубями в комплексе с женьшенем, левзеей на иммуноморфологическую реактивность лимфоидных органов.

Материалы и методы. В трех сериях опытов по изучению иммуноморфологических перестроек в центральных и периферических органах иммуногенеза было использовано 81 животное – белые лабораторные крысы. Крысы 1-ой группы были контрольные, 2-9-ой группы – опытные. Животным 2-ой группы в рацион вносили мёд с золотым корнем, 3-ей группы – мёд с женьшенем, 4-ой группы – мёд с левзеей, 5-ой группы – мёд с расторопшей пятнистой. Крысам 6, 7, 8 и 9-ой опытных групп в рацион вносили те же композиции в комплексе с пшеничными отрубями. Мёд с растительными добавками вносили в рацион из расчета 5 г на голову, 2 раза в день. Убой крыс для иммуноморфологических исследований проводили от животных первой, третьей, четвертой, седьмой и восьмой групп до начала и в конце опытов. Кусочки органов для гистологических исследований фиксировали в 10 %нейтральном формалине. Парафиновые срезы окрашивали гемотоксилин-эозином, азур II эозином.

Результаты исследований. В селезенке крыс опытных групп существенные изменения сторону позитивных В иммуноморфологических перестроек. Красная пульпа в селезенке крыс 3, 4, 7 и 8-й групп к 60 дню эксперимента уменьшилась в размерах и по площади уступала фоновому уровню в 1,13 раза (на 8,5%), в 1,04 раза (на в 1,26 раза (на 14,7%) и в 1,17 раза (на 10,4%). Площади лимфатических фолликул без светлых и со светлыми центрами, а также периваскулярных лимфоидных муфт, напротив, имели тенденцию к расширению. Лимфатические фолликулы без светлых центров, на 60 день опыта, по занимаемой площади, превосходили фоновый показатель в селезенке крыс 3-ей группы – в 1,23 раза (на 3,3%), 4-ой группы – в 1,22 раза (на 1,8%), 7-ой группы – в 1,32 раза (на 4,7%), 8-ой группы – в 1,27 раза (на 3,8%). При этом максимальный их показатель, регистрируемый в селезенке крыс 7-ой группы, был выше параметров в селезенке животных 1, 3, 4 и 8-й групп: в 1,23 раза (на 17,7%), в 1,11 раза (на 2,0%), в 1,17 раза (на 2,9%) и в 1,08 раза (на 1,5%). Площадь лимфатических фолликул со светлыми центрами к 60 дню исследований была больше фонового показателя в селезенке крыс 3, 4, 7 и 8-й групп в 1,44 раза (на 1,91%), в 1,21 раза (на 0,91%), в 1,79 раза (на 3,6%) и в 1,42 раза (на 1,85%). Максимальной площадь лимфатических фолликул со светлыми центрами, к концу опыта была у крыс 7-ой группы. На данный срок исследований описываемый показатель превышал уровень контроля в 1,59 раза (на 3,97%), животных 3-ей группы - в 1,31 раза (на 1,96%), 4-ой группы - в 1,6

раза (на 3,07%), 8-ой группы - в 1,3 раза (на 1,92%). Площадь Т-зависимой периваскулярной лимфоидной муфты на 60 день опыта была выше фоновых цифр по 3, 4, 7 и 8-й группам, соответственно, в 1,53 раза, в 1,25, в 1,67 и 1,5 раза (на 4,86, на 2,38, на 6,32 и 4,64%). Самый высокий показатель площади периваскулярной лимфоидной муфты, регистрируемый у крыс 7-ой группы — 15,7%, превышала на 60 день эксперимента показатель контроля в 1,71 раза (на 6,52%), животных 3, 4 и 8-й групп в 1,12 раза (на 1,8%), в 1,31 раза (на 3,8%) и в 1,12 раза (на 1,8%).

Площадь коркового вещества тимуса крыс 3, 4, 7 и 8-й опытных групп изменялась в сторону его расширения и уменьшения площади мозгового вещества органа. На 60 день описываемый показатель превышал фоновый уровень в тимусе крыс 3, 4, 7 и 8-й групп в 1,09 раза (на 5,8%), в 1,03 раза (на 2,4%), в 1,14 раза (на 9,3%), в 1,09 раза (на 6,3%). Самое высокое значение показателя площади коркового вещества тимуса отмечалось у крыс 7-ой группы - 73,6%, которое превышало параметры крыс 1-ой контрольной группы в 1,15 раза (на 9,7%), 3, 4 и 8-й групп - в 1,05 раза (на 3,7%), в 1,09 раза (на 6,6%), в 1,03 раза (на 2,8%). Расширение площади коркового вещества тимуса сопровождалось динамичным уменьшением площади, занимаемой мозговым веществом органа.

Тимический индекс крыс 1 контрольной группы и его фоновый показатель у животных опытных групп, равный 0,15-0,16 свидетельствовал о среднем иммунном статусе. У крыс 3 и 4-ой групп он составил 0,19 и 0,18, что указывало на хороший иммунный баланс в организме крыс. Тимический индекс у крыс 7 и 8-ой групп достиг 0,23 и 0,21 и свидетельствовал о стабильной, высокой иммунной реактивности в организме этих животных.

Заключение. Медовые композиции с женьшенем, левзеей и с пшеничными отрубями усиливают иммуноморфологическую реактивность лимфоидных органов, проявляющихся активизацией Т- и В- зависимых зон в них.

АПИФИТОКОМПОЗИЦИИ ДЛЯ ВОССТАНОВЛЕНИЯ ИММУНОМОРФОЛОГИЧЕСКИХ СТРУКТУР ЛИМФОИДНЫХ ОРГАНОВ

Маннапова Р.Т., Ильясова 3.3. Резюме

Медовые композиции с женьшенем, левзеей и с пшеничными отрубями усиливают иммуноморфологическую реактивность лимфоидных органов, проявляющихся активизацией Т- и В- зависимых зон в них.

APIPHYTOCOMPOSITIONS FOR RESTORING OF IMMUNOMORPHOLOGICAL STRUCTURES OF LYMPHOID ORGANS

Mannapova R.T., Ilyasova Z.Z. Summary

Honey compositions with ginseng, rhaponticum carthamoides and wheat brans contribute to increase of immunomorphological reactivity of lymphoid organs, which are shown by activization of T- and B- dependant zones in them.

УДК 619.611.636:74

ЭКСТРАОРГАННЫЕ НЕРВЫ ОРГАНОВ ТАЗОВОЙ ПОЛОСТИ КОШАЧЬИХ

Миншагаева Ф.И.- к.в.н, доцент; **Акбирова С.Г**. – к.б.н., доцент; **Ситдиков Р.И**. - д.в.н., профессор, зав. кафедрой; **Фролова А.И**. – к. в.н., доцент; **Шамсутдинова Н.В**. – к.в.н., ст. преп.

ΦΓΕΟΥ ΒΠΟ ΚΓΑΒΜ, aivar3@mail.ru

Ключевые слова: кот, кошачьи, тазовое сплетение, срамной нерв, каудальное брыжеечное сплетение.

Key words: cat, feline, pelvic plexus, pudendal nerve, kaudalnoe bryzeecnoe plexus.

Целью наших исследований было изучение иннервации органов тазовой полости кошачьих.

Объектом исследований служили трупы трех взрослых половозрелых котов и трех половозрелых кошек в возрасте одного года и пяти лет.

Для изучения источников иннервации органов тазовой полости использовали метод обычного и тонкого анатомического препарирования под падающей каплей воды (В.П.Воробьев,1925).

В процессе проведения анатомического исследования мы установили, что источником иннервации органов тазовой полости кошачьих является тазовое сплетение (pl. pelvini), которое представлено сложным комплексом нервных ветвей и ганглиев. Симпатическими источниками формирования тазового сплетения служат подчревные нервы и ветви от крестцового отдела симпатического ствола. Кроме того, в тазовое сплетение входят симпатические волокна из околососудистых нервных сплетений, окружающих крупные сосуды органов тазовой полости. Парасимпатическая иннервация образована тазовыми нервами и ветвями срамного нерва (рис.1,2).