
УДК 616.831-001.31,34; 612.821.7

ВЛИЯНИЕ РАЗЛИЧНОЙ СТЕПЕНИ ТЯЖЕСТИ ПЕРЕНЕСЕННОЙ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ НА НАРУШЕНИЕ СТРУКТУРЫ НОЧНОГО СНА

Н.В.ШУНИНА

Центральная клиническая больница Украинской железной дороги, г. Харьков

e-mail: natshvic@gmail.com

Установлено, что у больных с последствиями черепномозговой травмы одними из частых последствий черепномозговой травмы являются нарушения сна. Это можно объяснить «вовлечением» структур головного мозга при травме головы, которые принимают участие в формировании сна.

У пациентов с перенесенной черепно-мозговой травмой тяжелой степени отмечаются более грубые нарушения сна. Нейрофизиологические изменения подтверждают объективность нарушений цикла сон-бодрствование у пациентов с перенесенной черепно-мозговой травмой.

Ключевые слова: черепно-мозговая травма, стадия засыпания, поверхностный, глубокий, быстрый сон.

Введение. Черепно-мозговая травма относится к наиболее распространенному виду повреждений и составляет от 36 до 40% от всех видов травм. Согласно данным Всемирной организации здравоохранения, частота черепно-мозговой травмы ежегодно увеличивается на 2%, при этом отмечается нарастание частоты более тяжелых видов повреждений, что связано с развитием техники, прежде всего средств передвижения, увеличением количества автомашин, урбанизацией населения. Черепно-мозговой травме наиболее часто подвержены люди трудоспособного возраста (от 20 до 50 лет), т.е. наиболее активный контингент населения [4,5].

В зависимости от ее тяжести и вида она приводит к различным по степени и распространенности, первичным структурно-функциональным повреждениям мозга на субклеточном, клеточном, тканевом и органном уровнях и расстройству центральной регуляции функций жизненно важных систем организма [6]. При черепно-мозговой травме в различные периоды могут возникать разнообразные последствия, в частности нарушения сна, что будет рассмотрено в данной статье[1, 7].

Целью нашей работы было выявление особенностей влияния различной степени тяжести черепно-мозговой травмы на нарушения структурысна у пациентов.

Методы и материалы. Нами было обследовано 100 пациентов на базе «Центральнойклиническойбольницы Украинской железной дороги».С целью выявления нарушений сна в зависимости от степени тяжести перенесенной черепно-мозговой травмы пациенты были разделены на три группы. В первую группу вошли 40 пациентов с перенесенной черепно-мозговой травмой легкой степени тяжести. Вторая группа состояла из 31 пациента с перенесенной черепно-мозговой травмой средней степени тяжести. Третья группа представлена 29 пациентами с перенесенной черепно-мозговой травмой тяжелой степени тяжести. На момент обследования средний возраст в первой группе 36,3±1,02 лет, во второй группе 35,01±1,07 лет, в третьей группе 33,06±1,52 лет. У обследуемых нами пациентов параксизмальные состояния не отмечались.

Всем пациентам была проведена ЭЭГ ночного сна.Запись ночного сна велась в течение 4-6 часов от засыпания до пробуждения пациентов.Для объективизации данных использовался метод однофакторного дисперсного анализа. В качестве сравнения была взята контрольная группа из 20 практически здоровых людей.

Электроэнцефалографическое (ЭЭГ) исследование ночного сна проводилось с последующей идентификацией его стадий согласно общепринятым критериям [3, 2, 8]:

- увеличение времени засыпания;
- изменения NonREM-cна: 2)
 - а) увеличение длительности поверхностного сна,
 - б) изменение продолжительности глубокого сна,
 - в) смена стадий сна.
 - г) бодрствование внутри сна.
 - д) период засыпания после спонтанного пробуждения;
- укорочение или отсутствие фазы REM сна; 3)
- продолжительность сна;

5) кратность циклов ночного сна.

Ночной сон оценивался по первому циклу сна, так как в последующих циклах у практически здоровых людей I стадия сна отсутствует, поверхностный сон укорачивается, быстрый сон удлиняется. При шифровке ЭЭГ ночного сна у пациентов, которые перенесли черепномозговую травму, может неправильно интерпретироваться продолжительность фаз сна, с последующим неправильным выводом о наличии структурных нарушений сна [2,9].

Результаты исследования. Первой стадией сна является засыпание. При шифровке ЭЭГ сна у пациентов трех основных групп не у всех определялось нарушение этой стадии. При наличии нарушений этой стадии, с целью объективизации выраженности, в зависимости от затраченного времени, каждая группа была поделена на подгруппы, а именно–засыпание от получаса до часа и более часа. Время засыпания в контрольной группе составило 3-10 минут, что соответствует общепринятой норме

При дальнейшей шифровке ЭЭГ ночного сна было определено, что продолжительность поверхностного сна у пациентов во всех группах резко увеличена. С целью объективизации выраженности нарушения второй стадии мы так же, как и при шифровке первой стадии, каждую группу разделили на подгруппы в зависимости от затраченного времени, а именно, от 25 минут до 40 минут, до часа и более часа. Продолжительность поверхностного сна в контрольной группе составляла 20 минут. Это 45-50% от общей продолжительности цикла сна.

Вслед за поверхностным сном идет дельта-сон. У здоровых людей он занимает 20-25% (10-20 минут) от общей продолжительности цикла сна. У большинства обследуемых нами пациентов отмечалось укорочение глубокого сна до 15% (5-10 минут), а также отсутствие стадии глубокого сна. Другими словами, пациенты находились в состоянии дремоты.

Изменение поверхностного и глубокого сна может быть обусловлено как внутренними, так и внешними факторами. При тяжелой степени черепно-мозговой травмы происходят более грубые нарушения участков головного мозга, отвечающих за формирование сна, чем при черепно-мозговой травме легкой степени сна. Также немаловажное значение имеет место локализации полученной травмы головы.

Через 80-100 минут вслед за медленным сном в контрольной группе наступал быстрый сон, или сон с быстрыми движениями глаз. Он состоит только из одной фазы. Такой сон продолжается 5-10 минут и составляет 10-15% от общей продолжительности сна. У части обследуемых нами пациентов отмечалось укорочение быстрого сна или его отсутствие.

Данные о продолжительности стадий сна у пациентов трех основных групп представлены в табл. 1.

Длительность стадий сна у пациентов всех групп

Таблипа 1

Стадии	Кол-во	Продолж.	Кол-во	Продолж.	Кол-во	Продолж.
сна	больных	ст.(мин)	больных	сна	больных	ст.(мин)
	1-я гр	уппа	2-я гј	руппа	3-я гр	уппа
Ι	13	44,7±2	7	47,5±3	8	45 ±3,3
	10	69±2,8	10	71,8±2,3	4	78,7± 4,3
II	10	35±5,3	8	35± 7,2	3	32,4 ±7,3
	8	56±3	9	56,4± 3	7	57 ±2
	2	81±4,3	3	84 ±2,5	10	$85 \pm 3,4$
III-IV	23	6,5±3	17	5,3± 2	13	3,5
	5	Не было	9	Не было	12	Не было
REMcон	18	3,2±1,2	15	3 ±0,9	3	3 ±0,5
	2	Не было	3	Не было	18	Не было

У обследуемых нами пациентов при шифровке ЭЭГ ночного сна отмечались не только изолировано нарушения засыпания, поверхностного, глубокого, быстрого сна, но смешанная форма структурных нарушений сна, т.е. у пациентов наряду с затруднением засыпания отмечались и ночные пробуждения, и отсутствие глубокого сна и быстрого сна, что наглядно представлено в табл. 1.

С целью определения зависимости нарушений стадий сна от степени тяжести травмы мы использовали метод однофакторного дисперсионного анализа, вычисляемый по формуле: K=P*C/100,

где P – процентное соотношение пациентов с отклонениями в группах по стадиям сна (табл.2); C – средние значения отклонений от нормы(табл.3);

К – коэффициент отклонения от нормы (табл.4).

Анализ результатов показывает, что для поверхностного и быстрого сна видна четкая зависимость от степени черепно-мозговой травмы: с увеличением степени тяжести травмы

увеличивается степень нарушений сна. Для засыпания и глубокого сна такой вывод сделать нельзя.

Таблица 2 **Процентное отношение пациентов с отклонениями в группах по стадиям сна (P), %**

Группа	1	2	3-4	Быстрый
1	57,5	50,0	70,0	55,0
2	54,8	64,5	83,9	58,1
3	41,4	69.0	86.2	72,4

Средние значения отклонений от нормы (С), мин.

Таблица 3

Группа	1	2	3-4	Быстрый
1	47,0	28,3	-6,2	-3,9
2	51,8	32,0	-7,2	-4,4
3	46,3	48,3	-7,9	-6,7

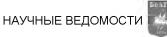
Таблица 4 Коэффициент отклонения от нормы у пациентов трех основных групп в зависимости от стадий сна

Группа	1	2	3-4	Быстрый
1	27,05	14,15	-4, 33	-2,13
2	28,39	20,61	-6,03	-2,55
3	19,14	33,28	-6,83	-4,83

В соответствии со схемой однофакторного дисперсионного анализа для различных стадий сна получены результаты, приведенные в табл. 5 и б.

Оценки дисперсийстадий сна в трех группах

Таблица 5


Таблица 6

Характер		Сумма квадрато	В	Число	Оценки	дисперсий
вариации	Обозна-	Стадия	Значение	степеней	Обозна-	Значение
	чение			свободы	чение	
		1	18417,41			9208,703
Систематическая	00	2	33328,84		S22	16664,42
(межгрупповая)	Q2	3-4	192242,9	2	322	96121,45
		Быстрый	169960,1			84980,03
Остоточно а		1	68306,7			704,1928
Остаточная	O1	2	45062,25	07	S12	464,5593
(внугригруппо- вая)	Q1	3-4	1202,432	97	312	12,39621
вая)		Быстрый	650,1904			6,702993
		1	86724,11			
Итого	0.0	2	78391,09	00	-	
	Qo	3-4	193445,3	99		-
		Быстрый	170610,3			

Отношения дисперсийстадий сна у пациентов в трех группах

Отношения дисперсий		значение (α=5%)		Вывод	
Обозн.	Стадия	Значение			
	1	13,07696		Степень травмы влияет на 1 стадию сна	
	2	35,87146		Степень травмы влияет на 2 стадию сна,	
				причем сильнее, чем на 1 стадию	
F	3-4	7754,1	$F\kappa p = 3,10$	Степень травмы влияет на 3-4 и быструю	
	Быстрый	12677,92		стадии сна, более выраженно, чем на 1 и	
				2 стадии. Самое сильное влияние на	
				быстрый сон	

Для расчета данных мы ввели показатель степени влияния:

Fo=(F-Fkp)/Fkp.

Для стадий сна показатель степени влияния Fo имеет следующие значения: 3,218375; 10,57144; 2500,322 и 4088,652 соответственно.

У большинства пациентов всех групп на ЭЭГ отмечались переходы стадий поверхностного и глубокого сна в состояние бодрствования, т.е. пробуждения внутри сна. Мы провели анализ влияния степени травмы на пробуждения внутри сна (табл. 7).

Таблица7

Данные по пробуждению и времени засыпания внутри сна у пациентов в трех группах

Группо	Пробуждения		Засыпание, мин		
Группа	Колич.	%	min	средн	max
1	13	32,5	15	21	30
2	18	58	15	20	40
3	20	68,9	20	31	45

Для расчетов мы ввели коэффициент пробуждения Кр, вычисляемый по формуле: Кр=Тзасып * К/100,

гдеТзасып. – длительность засыпания, мин.;

К – количество больных, у которых наблюдалось пробуждение, %.

В табл. 8 приведены численные значения коэффициента пробуждения.

Таблица 8

Значения коэффициента пробуждения у пациентов

Группа	Кр					
Группа	Тзасып. min	Тзасып. средн.	Тзасып. тах			
1	4,875	6,825	9,75			
2	8,7	11,6	23,2			
3	13,78	21,359	31,005			

Из вышепредставленных результатов следует, что степень тяжести перенесенной черепно-мозговой травмы влияет на пробуждения внутри сна.

Мы также провели анализ влияния степени тяжести травмы на кратность циклов ночного сна. Вычислили в процентном отношении число отклонений по кратности циклов ночного сна, а также минимальные, средние и максимальные значения отклонений (табл. 9 и 10).

Таблица 9

Характеристики отклонений по кратности циклов ночного сна

Группа	Отклонений, %			т, % Величина отклонений, мин.		
	min	средн.	max	min	средн.	мах
1	66,7	52,5	9,5	1	1,76	4
2	36,0	80,7	12,0	1	1,96	4
3	15,4	89,7	69,2	1	3,38	4

Вычислили коэффициент (показатель) нарушения кратности циклов по формуле: Khu=B*O/100,

гдеВ – величина отклонений, мин.;

О – процент отклонения.

Коэффициент нарушения кратности циклов

Таблица 10

Группа	min	средн	max
1	0,67	0,925	0,381
2	0,36	1,58	0,48
2	0.15	3 03	9 77

Из результатов следует, что степень тяжести травмы влияет на кратность циклов. Чем больше степень тяжести черепно-мозговой травмы, тем значительней нарушения. Данный факт хорошо иллюстрируется коэффициентом нарушений для средних величин. Следует отметить, что при черепно-мозговой травме легкой степени тяжести большая часть нарушений связана с небольшими отклонениями от нормы и меньшая часть — со значительными отклонениями. За-

тем во 2-й и далее 3-й группах наблюдается перераспределение: количество малых нарушений снижается, но существенно увеличивается часть значительных отклонений.

Выводы:

- 1. Черепно-мозговая травма вызывает определенные неспецифические изменения структуры сна.
- 2. Выраженность структурных изменений сна обусловлена степенью тяжести перенесенной черепно-мозговой травмы. Это можно объяснить «затрагиванием» структур головного мозга при травме головы, которые принимают участие в формировании сна.
- 3. Нейрофизиологические изменения подтверждают объективность нарушений цикла сон-бодрствование у пациентов с перенесенной черепно-мозговой травмой.
- 4. Нарушения сна являются одними из значимых клинических синдромов у пациентов с перенесенной черепно-мозговой травмой.

Перспективным является то, что таким больным может быть рекомендовано комплексное лечение с учетом терапии нарушений сна на всех этапах заболевания.

Литература

- 1. Богданов, А.Н. Нормы и патологии сна как критерии состояния адаптации человека / А.Н. Богданов, К.В. Шевченко.// Актуальные проблемы адаптации человека. – 2001. – №1. – С. 97-103
- 2. Болдырева, Г.Н. Электрическая активность мозга человека при поражении диэнцефальных структур/Г.Н. Болдырева. –М.: Наука, 2000.– 184 с.
- 3. Борисова, Е.Д. Актуальные вопросы физиологии и патологии сна. Нейрофизиологические методы диагностики психофизиологического состояния/Е.Д. Борисова, В.Н. Сысоев// Вестник Российской военно-медицинской академии. Приложение. — 2005. — N21(14). — С. 282-283.
- 4. Дралюк, М.Г. Черепно-мозговая травма : учеб.пособие/М.Г. Дралюк, Н.С. Дралюк, H.В.Исаева. — Ростов-н/Д: Феникс, 2006. – 192 с.
- 5.Кондаков, Е.Н. Черепно-мозговая травма: руководство для врачей неспециализированных стапионаров/Е.Н. Кондаков, В.В.Кривепкий. – М.: Медипина, 2002.
- 6.Латышева, В.Я.Черепно-мозговая травма: классификация, клиническая картина, диагностика и лечение :учеб.пособие/В.Я. Латышева, М.В.Олизарович, В.Л.Сачковский. Минск: Вышэйшаяшкола, 2005.
- 7.Langer, S. Symptomatictreatmentofinsomnia / S. Langer, W. Mendelson // Sleep. 1999. Vol.15. P.437-444.
- 8.Kryger, M.PrinciplesandPracticeofSleep Medicine (Eds) / M.Kryger, T.Ross, W.Dement. Philadelphia, 2005.-P 547-575, 615-622, 714-746, 1297-1349.
- 9. Varkevisser, M. Chronic Insomnia and Performance in a 24-h Constant Routine Study / M. Varkevisser, G.A. Kerkhof //J. Sleep Res.-№ 14.- 2005. - P. 49-59.

THE INFLUENCE OF VARYING SEVERITY DEGREES OF THE BRAIN INJURY ONDISORDER **OF A NIGHT'S SLEEP STRUCTURE**

N.V. SHUNINA

Central Clinical Hospital of Ukrzaliznytsia, Kĥarkiv, Ukraine

e-mail:natshvic@gmail.com

It is known that in patients with sequelae of traumatic brain injury the frequent consequences of are sleep disorders. This may be explained by the "involvement" of the brain structures that take part in the formation of sleep.

In patients with history of severe traumatic brain injury the sleep disorders are strongly pro-nounced.

Neurophysiological changes confirm the objectivity of disorders of sleep-wake cycle in pa-tients with a history of traumatic brain injury.

Keywords: traumatic brain injury, the stage of sleep, NREM sleep, REM sleep.