Влияние гипербарической оксигенации на эффективность комбинированного лечения рака яичников

А.С. Дзасохов

ГБУЗ МО «Московский областной онкологический диспансер», Балашиха

Контакты: Алексей Сергеевич Дзасохов apprentice@list.ru

Полученные автором данные свидетельствуют о повышении эффективности стандартного комбинированного лечения рака яичников при сочетании химио- и оксигенотерапии.

Ключевые слова: рак яичников, химиотерапия, оксигенотерапия, гипербарическая оксигенация

Impact of hyperbaric oxygenation on the efficiency of combined treatment for ovarian cancer

A.S. Dzasokhov

Moscow Regional Oncology Dispensary, Balashikha

The author's findings suggest the higher efficiency of standard combined treatment for ovarian cancer in combination with chemotherapy and oxygen therapy.

Key words: ovarian cancer, chemotherapy, oxygen therapy, hyperbaric oxygenation

Актуальность проблемы злокачественных опухолей яичников обусловлена высокой частотой заболевания, трудностями ранней диагностики и неудовлетворительными результатами первичного лечения и лечения рецидивов. В последние годы как в России, так и за рубежом не достигнуто существенного прогресса в этом разделе онкогинекологии [1—4].

В структуре причин смерти пациенток с опухолями гениталий раку яичников (РЯ) принадлежит 1-е место [1, 4, 5]. Летальность от РЯ превышает смертность от рака шейки и тела матки вместе взятых. В России от злокачественных опухолей яичников умирает 47—57 % онкогинекологических больных [1].

Летальность больных РЯ на первом году после установления диагноза составляет 35 %. Показатели пятилетней выживаемости, по данным различных авторов, колеблются в пределах 25–40 % [1–4].

Для лечения рецидива РЯ в подавляющем большинстве случаев используются цитостатики в различных комбинациях. Однако перспективы таких больных по-прежнему неутешительны и продолжительность их жизни по большей части зависит лишь от сроков возникновения рецидива после первичного лечения [6, 7].

Известно, что тканевая гипоксия является одним из важнейших условий возникновения, существования и прогрессирования злокачественной опухоли [8—11]. С этой точки зрения следует признать, что применение оксигенотерапии в ходе лечения злокачественных новообразований обосновано патогенетически. Одним из наиболее известных методов оксигенотерапии является гипербарическая оксигенация (ГБО), которая представ-

ляет собой ингаляции воздушной смесью, обогащенной кислородом при повышенном атмосферном давлении [12].

В ходе многих независимых исследований достоверно установлено, что ГБО способна увеличивать эффективность противоопухолевого лечения, а при ее отсутствии не способствует прогрессированию злокачественного заболевания [12–16].

В период с 1999 по 2012 г. в 5-м онкологическом (гинекологическом) отделении Московского областного онкологического диспансера проведено исследование влияния кислородотерапии на эффективность лечения первичного РЯ, в которое вошли 234 пациентки. Критериями включения были первичный характер заболевания, хирургическое лечение на первом этапе в условиях специализированного отделения, морфологическая верификация заболевания (включая цитологическое или гистологическое исследование метастатических образований). Распределение пациенток по группам сопоставления происходило случайным образом по мере их поступления для лечения в отделение. По дизайну исследование было когортным (проспективным) контролируемым открытым. Контрольный период (плацебопериод) составил время от момента начала лечения до момента проведения 2-го курса химиотерапии (ХТ).

В качестве объективных были использованы лабораторные показатели гомеостаза пациенток, определяемых в Московский областной онкологический диспансер, а также параклинические методы обследования. Кратность стандартной схемы обследования была следующей:

- 1) первичное обследование при первой госпитализации, включая морфологическую верификацию диагноза;
- 2) этапное обследование после 2 курсов полихимиотерапии (ПХТ) (при госпитализации на 3-й курс текущей линии ХТ);
- 3) этапное обследование по окончании лечения (при госпитализации для 6-го курса текущей линии ПХТ);
- 4) катамнестическое обследование (диспансерное наблюдение) через 1,5 мес после окончания лечения и далее при отсутствии данных о рецидиве или продолженном росте через 3, 6, 12 мес (и далее 1 раз в 6 мес).

Все больные, включенные в основные группы, дали информированное согласие на участие в программе клинического исследования на условиях полной анонимности.

В целях решения поставленных задач все пациентки, включенные в исследование, были разделены на 2 группы для дальнейшего обследования и лечения. В контрольную группу были включены 120 пациенток, в основную группу – 56 больных, которые получали помимо стандартного противоопухолевого лечения ГБО. Помимо этого была выделена еще одна группа, в которую вошли 58 пациенток, получавших в качестве кислородотерапии нормобарическую оксигенацию (НБО). НБО осуществляли в соответствии со способом лечения тканевой гипоксии за счет неинвазивного воздействия на микроциркуляцию крови и лимфы парами перекиси водорода через дыхательные пути посредством 2-камерного парового ингалятора электродного типа, бесконтактного, с одновременной самодезинфекцией выходных каналов, работающего от бытовой электросети 220 Вт 50 Гц. В процессе исследования установлено, что ГБО обладает значительными терапевтическими преимуществами перед НБО, поэтому в данном материале представлено сопоставление только группы ГБО и контроля.

В среднем период прослеженности в группе ГБО составил 38,5 мес, в контроле — 33,3 мес.

Средний возраст больных группы ГБО составил 54,4 года, контрольной группы — 55,2 года.

Все пациентки на первом этапе лечения были подвергнуты хирургическому лечению. По объему оперативного вмешательства распределение произошло следующим образом: в контрольной группе экстирпация матки с придатками с одномоментной резекцией большого сальника была проведена в 98 (81,6%) случаях, экстирпация матки с придатками — в 12 (10%), надвлагалищная ампутация матки с придатками с резекцией большого сальника — в 10 (8,4%). В основной группе соотношение было сходным — 45 (80,3%), 5 (8,9%) и 6 (10,8%) случаев соответственно.

Наличие остаточной опухоли (после циторедуктивного хирургического лечения) в группе ГБО зарегистрировано у 44 (78,6 %) пациенток, в контроле — у 85

Таблица 1. Распределение больных в группе РЯ по стадиям заболевания

Стадия по FIGO	Контрольная группа		Группа ГБО	
	абс.	%	абс.	%
IA	10	8,3	3	5,4
IB	4	3,3	1	1,8
IC	7	5,8	1	1,8
IIA	0	0,0	0	0,0
IIB	0	0,0	0	0,0
IIC	5	4,3	3	5,4
IIIA	6	5,0	4	7,1
IIIB	3	2,5	3	5,4
IIIC	69	57,5	36	64,2
IV	16	13,3	5	8,9
Всего	120	100,0	56	100,0

(70,8%). При этом в контрольной группе остаточная опухоль диаметром > $20 \,\mathrm{mm}$ была выявлена в $68 \,(56,7\%)$ случаях, в группе ГБО — в $36 \,(64,3\%)$; < $20 \,\mathrm{mm}$ — в $17 \,(14,1\%)$ и $8 \,(14,3\%)$ случаях соответственно.

По морфологии подавляющее большинство случаев (> 90 %) в обеих группах пришлось на серозную аденокарциному: 112 (93,3 %) случаев в контроле и 51 (91,1 %) — в группе ГБО. Муцинозная аденокарцинома была выявлена у 7 (5,8 %) и 4 (7,1 %) пациенток соответственно. Светлоклеточная аденокарцинома была обнаружена у 2 пациенток (1 (0,9 %) случай в контроле и 1 (1,8 %) — в группе ГБО).

Распределение по стадиям РЯ в группах сопоставления демонстрируют сводные данные, представленные в табл. 1.

При сопоставлении данных, приведенных в табл. 1, обращает на себя внимание то, что у 5 (8,9%) пациенток в группе ГБО была IV стадия заболевания, при этом в контроле таких больных было 16 (13,3%). В остальном распределение по стадиям было относительно равномерным, за исключением большего удельного веса ранних стадий в контроле по отношению к группе ГБО и обратной ситуации в отношении III стадии РЯ. Иными словами, незначительно уступая контрольной группе по встречаемости IV стадии (< 5%), группа ГБО превосходила ее по частоте встречаемости III стадии на 11,8%. В целом частота встречаемости РЯ III и IV стадий была выше в группе ГБО: 85,7% против 78,3% в контроле.

Цитостатическая терапия в обеих группах начиналась по окончании раннего послеоперационного периода (строго после морфологической верификации процесса). В исследовании использовались следующие схемы ПХТ: СР (циклофосфан + цисплатин) и ТС (паклитаксел + карбоплатин) в стандартных дозировках, рассчитанных с учетом веса и площади поверхности тела пациенток, а также стандартная сопроводительная терапия, направленная на профилактику и лечение токсических эффектов ХТ (терапия глюкокортикоидами, антиэметиками, инфузионная, дезинтоксикационная терапия). В контрольной группе 66 (55 %) пациенток получали ПХТ по схеме СР, 54 (45 %) — по схеме ТС. В основной группе распределение по схемам ПХТ было сходным: 30 (53,6 %) и 26 (46,4 %) пациенток соответственно.

Лечение тканевой гипоксии при помощи ГБО осуществляли посредством барокамеры ОКА-1 при 0,5 атм. по следующей схеме: 10 сеансов (по 1 в день) по 40 мин, начиная за 5 дней до 2-го курса ХТ, 1 сеанс в день ХТ и 4 сеанса после введения цитостатиков. Данная программа кислородотерапии проводилась в связи с тем, что изначально одной из групп сопоставления была группа НБО. НБО осуществлялась по методике, описанной в патенте на изобретение № 2184553, приоритет от 30.05.1988 г. Для корректного сопоставления эффективности методик кислородотерапии ГБО проводилась по той же схеме, что и НБО (число, кратность сеансов кислородотерапии и т.д.).

Полной регрессии (по классификации ВОЗ) по окончании лечения в контроле удалось достичь в 52 (43,3%) случаях, в группе ГБО — в 23 (41,1%).

Частичная регрессия в контроле достигнута у 58 (48,4%) пациенток, в группе ГБО — у 30 (53,6%); стабилизация состояния отмечена в 10 (8,3%) и 3 (5,3%) случаях соответственно.

При рецидиве заболевания, диагностированном в ранние сроки (до 6 мес от момента окончания первичного лечения), в качестве 2-й линии ПХТ была использована схема СР (при первичном лечении по схеме ТС) и схема ТС (при первичном лечении по схеме СР). Если рецидив возникал спустя 6 мес и более от момента завершения первичного лечения, то для 2-й линии ПХТ применялась исходная комбинация препаратов.

В нашем исследовании достоверных различий в эффективности схем ТС и СР ни в 1-й, ни во 2-й линии лечения установлено не было. При этом среднее количество линий ПХТ в контроле за время наблюдения составило 3,4; в группе Γ БО - 2,7.

Для сравнительной характеристики эффективности лечения в группах сопоставления автором также определена общая выживаемость (ОВ) и медиана выживаемости. ОВ в группах исследования описана по методике Каплана—Майера [17]. Данные по ОВ представлены в табл. 2.

Трехлетняя выживаемость в группе ГБО составила 87,6%, в контроле -64,2%. При промежуточной оцен-

Таблица 2. *ОВ в группе лечения РЯ*

Время, мес	Группа контроля (n = 120), %	Группа ГБО (n = 56), %
12,0	100	100
24,0	91,5	98,1
36,0	64,2	87,6

ке выживаемости отмечено, что первые отличия по выживаемости в контроле и группе ГБО встречаются уже через 24 мес после проведенного лечения. Так, в контроле 24 мес пережили 91,5 % пациенток, а в группе ГБО -98,1%.

Медиана выживаемости в группе первичного лечения РЯ на фоне ГБО составила 52 мес, а в контроле — 41 мес (p = 0.00205).

В среднем длительность безрецидивного периода в контрольной группе составила 10 мес, в группе $\Gamma BO - 12$ мес. Сроки возникновения рецидива заболевания варьировались от 2 до 25 мес в обеих группах.

Таким образом, установлено, что ГБО достоверно увеличивает трехлетнюю выживаемость больных при первичном лечении РЯ по сравнению с контролем (на 23,4 %), медиану выживаемости больных (на 11 мес) и среднюю продолжительность безрецидивного периода.

Заключение

Подытоживая результаты исследования, следует отметить, что контингент основной группы при несколько худшем прогнозе (по критерию наличия и размеров остаточной опухоли после оперативного вмешательства, а также по частоте встречаемости местнораспространенных и генерализованных форм РЯ) в целом соответствовал контрольной группе. При этом в основной группе исследования удалось достичь лучшего терапевтического эффекта по таким показателям, как трехлетняя выживаемость, медиана выживаемости и средняя длительность безрецидивного периода.

Выводы

- 1. При изучении доступной литературы установлено, что тканевая гипоксия является существенным фактором канцерогенеза, а ГБО патогенетически обоснованным и безопасным способом ее лечения при злокачественном новообразовании.
- 2. На собственном материале автором установлено, что ГБО повышает эффективность комбинированного лечения РЯ.
- 3. Представляется целесообразным провести более масштабное рандомизированное исследование влияния ГБО на эффективность комбинированного лечения РЯ и злокачественных заболеваний иной локализации.

Гинекология

ЛИТЕРАТУРА

- 1. Аксель Е.М. Статистика злокачественных новообразований женской половой сферы. Онкогинекология 2012;(1):18—23.
- 2. Тюляндин С.А., Носов Д.А.,
- Переводчикова Н.И. Минимальные клинические рекомендации Европейского Общества Медицинской Онкологии (ESMO).
- М.: Издательская группа РОНЦ им. Н.Н. Блохина, редакция русского перевода. 2010. 436 с.
- 3. Awada A., Klastersky J. Ovarian cancer: state of the art and future directions. Eur J Gynaecol Oncol 2004;25(6):673–6.
- 4. Dhillon P.K., Yeole B.B., Dikshit R. et al. Trends in breast, ovarian and cervical cancer incidence in Mumbai, India over a 30-year period, 1976–2005: an age-period-cohort analysis. Br J Cancer 2011;105(5):723–30.
- 5. World Health Organization. World health statistics. WHO Library Cataloguing-in-Publication Data, 2012. P. 43–79.
- 6. Ivanov S., Ivanov S., Khadzhiolov N. Prognostic factors and better survival rate after

- the treatment of advanced ovarian cancer with neoadjuvant chemotherapy. Akush Ginekol (Sofiia) 2004;43(6):17–9.
- 7. Rose P.G. Which is the best foot to put forward in recurrent ovarian cancer? Cancer 2012;118(13):3229–31.
- 8. Alagoz T., Buller R.E., Anderson B. et al. Evaluation of hyperbaric oxygen as a chemosensitizer in the treatment of epithelial ovarian cancer in xenografts in mice. Cancer 1995;75(9):2313–22.
- 9. Mueller-Klieser W., Schaefer C., Walenta S. et al. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry. Cancer Res 1990;50(6):1681–5.
- 10. Vaupel P., Höckel M. Tumor oxygenation and its relevance to tumor physiology and treatment. Adv Exp Med Biol 2003;510:45–9.

 11. Weinmann M., Belka C., Plasswilm L. Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours.

 Onkologie 2004;27(1):83–90.

- 12. Cassileth B. Oxygen therapies. Oncology (Williston Park) 2009;23(13):1182.
- 13. Дзасохов А. С. Патогенетическое обоснование применения оксигенотерапии в онкологии. ВНМТ 2011;8(4):196.
- 14. Dar'ialova S.L., Vedernikova N.V., Bergut F.L., Zel'vin BM. Use of antitumor preparations under hyperbaric oxygenation in ovarian cancer. Akush Ginekol (Mosk) 1979;(12):34–6.
- 15. Rusyniak D.E., Kirk M.A., May J.D. et al. Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke 2003;34(2):571–4.
- 16. Moen I., Stuhr L.E. Hyperbaric oxygen therapy and cancer a review. Target Oncol 2012;7(4):233–42.
- 17. Guyot P., Ades A.E., Ouwens M.J., Welton N.J. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol 2012;12:9.