ВЛИЯНИЕ 3-ОКСИПИРИДИНАЦЕТИЛЦИСТЕИНАТА НА РАЗВИТИЕ МОРФОФУНКЦИОНАЛЬНЫХ ИЗМЕНЕНИЙ В ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЕ ПРИ ЭКСПЕРИМЕНТАЛЬНОМ САХАРНОМ ДИАБЕТЕ.

Рогожин А.Ю.

Мордовский государственный университет, Медицинский институт, курс фтизиатрии, г. Саранск.

Сахарный диабет является самой распространенной эндокринной патологией. Проблема заболеваемости актуальна для современной медицины, что обусловлено ростом показателей распространенности, частоты, а также определенными трудностями в своевременном выявлении больных диабетом (С.В. Кудрякова и соавт., 2001).

Нами была выбрана модель свободно-радикальной патологии - аллоксановый диабет. Введенный в организм аллоксан превращается в диалуроновую кислоту, что сопровождается накоплением свободных радикалов, которые оказывают токсическое действие на β -клетки и приводит к их гибели, что позволяет экспериментально моделировать сахарный диабет 1-го типа (Баранов В.Г., Соколоверова И.М., Гаспарян А.Г., 1983)

Целью проводимого исследования является изучение влияния 3оксипиридинацетилцистеината на развитие морфо-функциональных изменений в поджелудочной железе и сыворотке крови при экспериментальном сахарном диабете.

Для достижения поставленной цели решались следующие задачи: изучение с помощью гистологических методов морфологического состояния поджелудочной железы белых нелинейных крыс при экспериментальном сахарном диабете; изучение влияния 3-оксипиридинацетилцистеината на некоторые метаболические показатели перикисного окисления липидов, углеводного, липидного и белкового обмена в сыворотке крови при экспериментальном СД у белых нелинейных крыс.

Исследование проведено на 40 половозрелых белых нелинейных крысах обоего пола массой тела 150-200 грамм, содержавшихся в стандартных условиях вивария. Моделировали экспериментальный СД путем однократного внутрибрюшинного введения аллоксана в дозе 150 мг/кг. Забор материала и его исследование производили через 28 дней после введения аллоксана.

В ходе эксперимента животные были разделены на 4 группы: 1. группа - интактные крысы ($N_2 = 10$); 2. группа контрольная - крысы с аллоксановым диабетом ($N_2 = 10$);

3. группа крысы аллоксановым диабетом, которым ежедневно раз вводился подкожно 3-ОПЦ 25 MG/KG2-x лень В дозе течение недель (№ = 10). 4. группа - крысы с аллоксановым диабетом, которым ежедневно 1 раз в день вводился 3-ОПЦ 5мг/кг подкожно дозе недель (№ = 10).

Забор экспериментального материала для морфологического исследования производили под наркозом. Животных забивали гильотинным способом. Быстро извлекали из брюшной полости поджелудочную железу и фиксировали в 12 % нейтральном формалине, обезвоживали путем погружения в спиртовые растворы возрастающей концентрации и затем кусочки заковывали в парафиновые блоки, из которых на санном микротоме изготавливали полутонкие срезы (40-120мкм).

Введение аллоксана приводит к достоверному увеличению содержания сахара в сыворотке крови с 2.81 ± 0.26 ммоль/л до 5.88 ± 0.35 ммоль/л (P_u <0,001), что составляет 210 % по сравнению с интактными крысами. Согласно результатам нашего исследования введение 3-ОПЦ в дозе 25мг/кг снижает уровень сахара в сыворотке крови с 5.88 ± 0.35 ммоль/л до 2.39 ± 0.19 ммоль/л (P_k <0,05), что составило 40,7% по сравнению с контрольной группой, а в дозе 5мг/кг до 3.41 ± 0.18 ммоль/л (P_k <0,001). Таким образом гипогликемический эффект более выражен при применении препарата в дозе 25мг/кг.

Морфометрический анализ островков Лангерганса показал, что у белых крыс на фоне аллоксанового диабета наблюдается достоверное уменьшение их площади с $68,68\pm3,71$ мкм² до $27,2\pm3,1$ мкм² (P_u <0,001), что составляет соответственно 39,6 % по сравнению с интактной группой крыс. Чем можно объяснить, что в некоторых островках появились единичные пустоты, это может быть следствием гибели клеток. оксипиридинацетилцистеината в дозе 25 мг/кг увеличивает площадь островков до 44,5%, что можно объяснить интенсификацией регенеративных процессов в железе под влиянием данного препарата. Кроме того при аллоксановом диабете уменьшается количество островков Лангерганса в 1 кв.см. со 100% до 44%. 3оксипиридинацетилцистеината в дозе 25 мг/кг достоверно повышает количество островков Лангерганса на 12%. Результаты влияния 3-АЦЦ в дозе 5 мг/кг на площадь и количество островков были не достоверными.

Исходя из полученных результатов, мы полагаем, что гипергликемия как характеристика аллоксанового диабета является следствием уменьшения β -клеточной популяции. Последующая нормализация уровня глюкозы в крови подопытных животных вероятно связано с интенсификацией регенеративных процессов в β -клеточной популяции под влиянием 3-оксипиридинацетилцистеината к концу эксперимента, что подтверждает потенциальную возможность регенерации β -клеток за счет клеток самого островка.

ЛИТЕРАТУРА

- Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2009. Т. 11. № 4. 1.
- Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2008. Т. 10. № 4. 2.
- 3. Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2007. Т. 9. № 4.
- Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2006. Т. 8. № 4.
- 5. Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2005. Т. 7. № 4.
- Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2004. Т. 6. № 4. 6. Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2003. Т. 5. № 4. 7.
- Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2002. Т. 4. № 4.
- Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2001. Т. 3. № 4.
- 10. Сборник научных тезисов и статей «Здоровье и образование в XXI веке». 2000. Т. 2. № 1.
- 11. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2009. Т. 11. № 12.
- 12. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2008. Т. 10. № 12.
- 13. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2007. Т. 9. № 12.
- 14. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2006. Т. 8. № 12.
- 15. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2005. Т. 7. № 12.
- 16. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2004. Т. 6. № 12.
- 17. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2003. Т. 5. № 12.
- 18. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2002. Т. 4. № 2.
- 19. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2001. Т. 3. № 2.
- 20. Электронный сборник научных трудов «Здоровье и образование в XXI веке». 2000. Т. 2. № 1.