данные находят логическое объяснение в биомеханике коленного сустава, движение в котором носит спиральный характер: при сгибании с опорой на область внутреннего мыщелка, при вращении вокруг продольной оси через внутренние мыщелки бедра и большеберцовой кости.

Таблица

Особенности асимметрии в строении коленных суставов по данным рентгеновской суставной щели (РСЩ) .

Показатели	Мужчины (n = 50)	Женщины (n = 48)
Рентгеновская суставная щель (РСЩ) правого колена		
Внугренняя половина (ВН)	5,51 ± 0,13	5,30 <u>+</u> 0,17
Наружная половина (НП)	$7,03 \pm 0,16 \text{ X}$	6,45 <u>+</u> 0,19 X.
Рентгеновская суставная щель (РСЩ) левого колена		
Внугренняя половина	5,22 ± 0,19	5,24 <u>+</u> 0,14
Наружная половина	6,64 <u>+</u> 0,20 X +	6,75 <u>+</u> 0,14 X

Примечание: 1). Знаком умножения (X) отмечены существенные (P < 0.05) отличия средних величин РСЩ НП от одноименных значений ВП.

- 2).Достоверные различия одноименных показателей между группами женщин и мужчин обозначены точкой (.).
- 3). Достоверные различия между РСЩ НП правого и левого и ВП правого и левого коленных суставов отмечены плюсом (+).

Статистический анализ рентгеновской суставной щели в возрастном аспекте позволил выделить закономерные изменения, связанные с возрастом. Установлена прямая корреляционная связь между шириной рентгеновской суставной щели колена в ее наружной половине и возрастом более выраженная у мужчин(r = +0.51), чем у женщин (r = +0.38).

Выводы.

- 1. Установлена внутрисуставная асимметрия коленных суставов с преобладанием ширины ее наружной половины.
- 2.У мужчин выявлена билатеральная асимметрия в области наружной половины коленного сустава.
- 3.Установлены гендерные различия в виде преобладания ширины наружной половины в мужских коленных суставах.
- 4.Доказано наличие прямой корреляционной связи, более выраженной у мужчин, между шириной рентгеновской суставной щели в ее наружной половине и возрастом.

Бочарова К.А.

к.м.н., доцент кафедры внутренних болезней №2 ФГАОУ ВПО «Белгородский государственный национальный исследовательский университет»

Дьячкова А.В. Тома Д.А.

ТРУДНОСТИ ДИАГНОСТИКИ СИНДРОМА DIGEORGE В ПРАКТИКЕ УЧАСТКОВОГО ВРАЧА ПЕДИАТРА

Аннотация

В статье отражены проблемы диагностики синдрома DiGeorge, встречающиеся в работе участкового врача педиатра, описаны этапы диагностики и рекомендованные методы исследования больных. В качестве примера приведен клинический случай с результатами исследований.

Ключевые слова: первичный иммунодефицит, синдром DiGeorge, врожденные пороки сердца, диагностика.

Key words: primary immunodeficiency, syndrome DiGeorge, congenital taint of the heart, diagnostics.

Синдром DiGeorge (DGS) относится к первичным иммунодефицитным состояния, имеющим конкретный генетический дефект, и классически включает конотрункальные пороки сердца в ассоциации с персистирующей гипокальцемией и дефектами клеточного звена иммунитета. Иммунодефицит при DGS является вторичным по отношению к более первазивному дефекту развития поля третьего и четвертого глоточного карманов, которые поражают паратиреоидные железы и тимус [2].

Распространенность этой хромосомной аномалии составляет, по крайней мере, 13 случаев на 100 000 живых родов, что делает ее наиболее частой генетической причиной врожденного порока сердца [1].

У большинства пациентов с DGS определяется 50% или менее от нормального количества Т-клеток и у 20% пациентов in vitro Т-клеточно пролиферативные реакции протекают менее, чем 50% от нормы. Некоторые иммунологи полагают, что диагноз DGS должен ограничиваться детьми с синдромом хромосомальной 22q11.2 делеции, у которых имеется менее, чем 500 клеток CD3+ Т-лимфоцитов на мм3. Некоторые исследователи полагают, что созревание Т-клеток у пациентов с DGS в норме и, что лимфопения напрямую связана с количественным уменьшением функциональной массы тимуса.

Никакие лабораторные исследования или фенотипические маркеры не коррелируют в достаточной степени с имеющимися дефектами иммунной системы [5]. Обычно выраженность дефектов клеточного и гуморального звеньев иммунитета уменьшается с возрастом, и у многих детей вырабатываются нормальные количества функциональных Т-лимфоцитов к концу второго года жизни; однако, скорость, величина иммуннного восстановления непредсказуема и приблизительно у 5% пациентов с DGS имеются значительно сниженные количества Т-клеток и их функции, как результат аплазии тимуса; поэтому этим пациентам может потребоваться трансплантация костного мозга [3].

Основную диагностическую ценность имеют следующие 5 групп признаков: врожденные пороки сердца (ВПС); гипоплазия (аплазия) тимуса; гипопаратиреоидизм; лицевой дизморфизм; расщелины неба, или пороки лицевого скелета [4].

Следует отметить, что процесс установления клинического диагноза DGS усложняется разнообразием проявлений синдрома, а также зависимостью клинической картины, от возраста пациента. В то же время чрезвычайно важным является само раннее установление диагноза, что обусловлено множественными осложнениями, которые могут возникнуть при ведении больного без учета наличия у него микроделеционого синдрома, задержки развития, которая нуждается в ранней коррекции, необходимостью проведения медикогенетического консультирование в семье [6,7].

Диагностическая значимость клинических проявлений синдрома микроделеции 22q11.2:

1) Решающие критерии: конотрункальные пороки сердца (тетрада Фалло, общий артериальный ствол, дефект межжелудочковой перегородки (ДМЖП), в соединении с атрезией легочной артерии (ЛА) и др.), родители ребенка с синдромом микроделеции 22q11.2.

- 2) Основные критерии: характерные лицевые аномалии, задержка умственного развития, сложности в учебе, расщелины неба, пороки развития лицевого скелета, нарушение глотания, гипокальциемия, иммунодефицит или гипоплазия тимуса.
- 3) Вспомогательные критерии: длинные, тонкие пальцы и кисти, низкий рост, гипотония, пороки почек, психические (особенно биполярные) расстройства, наличие в родословной случаев ВПС [6].

Предварительный клинический диагноз DGS устанавливается в тех случаях, когда пациент имеет: один из двух решающих критериев; два и больше основных критериев; один основной и один вспомогательный критерий.

При подозрении на наличие у пациента синдрома микроделеции 22q11.2 необходимо провести следующий перечень исследований: ЭХО-КГ; УЗИ вилочковой железы; иммуннограму; исследование уровня кальция крови; исследование уровня паратгормона; УЗИ почек; консультация офтальмолога; консультация оториноларинголога и челюстно-лицевого хирурга для оценки состояния твердого и мягкого неба; консультация детского психолога и невропатолога (первое исследование рекомендуется в возрасте одного года); молекулярноцитогенетическое исследование, для подтверждения диагноза [1].

Дифференциальный диагноз необходимо проводить с синдромом Гольденхара, синдромом Эдвардса, диабетической эмбриопатией, фетальным алкогольным синдромом, синдромом Цельвегера.

Установление диагноза DGS требует подтверждения с помощью поэтапного цитогенетического анализа:

1 этап – прометафазный анализ с выявлением, видимых в световой микроскоп делеций хромосомы 22 (до 10% всех случаев);

2 этап - FISH для исследования хромосомы 22 [3].

Селективный скрининг на наличие DGS с использованием FISH исследования необходимо проводить среди следующих групп: пациенты с комбинированными пороками сердца, особенно с дефектами конотрункального участка; пациенты, которые имеют сочетание врожденных пороков сердца с расщелинами неба; пациенты, у которых имеется врожденный порок сердца в сочетании с судорожным синдромом или гипоплазией тимуса; пациенты с изолированным несрастанием неба без расщелины губы [7,8].

Клинический случай.

Анамнез жизни: Мальчик Д., 2005 г.р. Ребенок от первой беременности, протекавшей на фоне угрозы прерывания, кольпитов, роды 1 оперативные — кесарево сечение на сроке 39-40 недель. При рождении масса тела 3090 г, длина 51 см, оценка по шкале Апгар 5/7. Выписан с диагнозом: асфиксия II степени гипоксическо-травматического генеза. В последующем наблюдался у невролога с диагнозом: энцефалопатия, синдром двигательных нарушений, задержка психомоторного развития. В настояющее время наблюдается у невролога с диагнозом ЗППР. Вакцинирован по возрасту. Аллергоанамнез не отягощен.

Анамнез заболевания: до поступления в дет.сад ребенок болел не часто, с 2010 г.после оформления стал часто болеть ОРВИ, сопровождающийся затяжным кашлем (по данным амбулаторной карты – сохраняющийся нейтрофилез при нормальных уровнях лейкоцитов и СОЭ). В декабре 2010 г.появились жалобы на повышении температуры, боли в животе, сухой кашель. Проводилось амбулаторное лечение. В последующем неоднакратно отмечались боли в правом коленном суставе.

В феврале 2011 г. появились жалобы на повышение температуры и на сильные боли в животе. Для исключения «острого живота» был госпитализирован в хирургичекое отделение, где хирургическая патология была исключена. Было выявлено увелечение лимфоузлов средостения, спленомегалия. При обследовании было обращено внимание на изменение в легких: при рентгенологическом исследовании в виде сетчатости., на кт уплотнение легочной ткани по типу «матового стекла».

Переведен в гематологическое отделение: в миелограмме костный мозг клеточный, полиморфный; на КТ грудной клетки с обеих сторон диффузно определяется разнокалибренные уплотнения легочной ткани с нечеткими контурами, неправильной формы до 16 мм, расположенные субплеврально. Проба Манту отриц. Проведена правосторонняя торакотомия, клиновидная резекция средней доли правого легкого, биопсия лимфоузла нижней доли. По данным гистологического исследования: полиморфная картина диффузных воспалительных изменений с участками острого обструктивного бронхиолита, участками с преоблоданием констриктивных изменений бронхиол и мелких бронхов за счет густого лимфоидного инфильтрата и гиперплированных фолликулов, участков клеточного фиброза, обильныи количество гистиоцитов с наличием многоядерных форм. Распределение CD+3 клеточного и CD20+ клеточного компонентов, пролиферативной активности и CD68+ гистиоцитов, соответствует реактивному характеру изменений. По морфологической картине — диффузный панбронхиолит с преобладанием констриктивного компонента. Ребенок был выписан с диагнозом интерстициальной пневмонии, вкачестве базисной терапии назначены системные кортикостероиды — метипред 8 мг /сут. На фоне проводимой терапии, по данным контрольного проведения КТ легких сохранялись выявленные ранее изменения по типу «матового стекла», однако их локализация менялась. Периодически в легких выслушивались непостоянные хрипы с обеих сторон. На фоне снижения дозы метипреда появился сухой кашель, расцененный как ухадшение состояния и доза метипреда увеличена до 24 мг/сут (6 таб/сут). На увелечение дозы появились побочные эффекты в виде повышения возбудимости, агрессивности.

С июня 2012 г.месяц находился на лечении в отделении пульмонологии с диагнозом: Интерстициальная пневмония. Первичное иммунодефицитное состояние: ОВИН? Аллергический ринит, ремиссия. Хронический компенсированный тонзиллит. ОU-смешанный астигматизм прямого типа. Амблиопия средней степени. Задержка психоречевого развития? ОНР II?

При обследовании: ОАК, СРБ - в норме, по данным иммунологического исследования: выраженное снижение IgG 2,68г/л, умеренное снижение IgM 0,37г/л, отсутствие IgA, CD3+CD4-CD8- 1,45%, тенденция к лимфопении 1820/мкл за счет Т-клеток (CD4+601/мкл, CD8+ 528/мкл), гормоны щитовидной железы в норме, по данным ФВД - легкое снижение вентиляции проксимальных бронхов, по ЭХО-КГ признаков пороков сердца не выявлено, ПМК, дилатация правого желудочка (18,3мм - норма до 14мм), легочной артерии (23,9мм). Давление в легочной артерии 17ММНg, диаскинтест отриц. По данным рентгенограммы грудной клетки: признаки обструктивного синдрома, интерстициального отека.

По данным КТ грудной клетки: КТ-признаки бронхита. КТ- семиотика бронхопневмонии, возможно, специфического генеза; нельзя исключить наличия инфекционного бронхиолита. Очаговые уплотнения правого легкого. Количественное увеличение средостенных, в т.ч., корневых и подмышечных л/у. Умеренная сепарация листков перикарда. Осмотрен фтизиатром:данных за туберкулезную инфекцию

В отделении проводилась ингаляционная (пульмикорт 500мкг/сут, беродуал), а/б (зиннат, сумамед) терапия, продолжено снижение метипреда.

В конце августа 2012г.госпитализирован в отделение иммунопатологии для дальнейшего обследования и определения тактики лечения. При поступлении доза метипреда составляет 2мг. Объективно: Состояние ближе к удовлетворительному. Не лихорадит. Кожные покровы бледно-розовые, чистые. Зев не гиперемирован. В легких дыхание жесткое, хрипов нет. Тоны сердца звучные, ритмичные. ЧСС 100 в мин. Живот мягкий, безболезненный. Печень +2см, селезенка +1,5см. Лабораторно-инструментальные исследования: молекулярно-генетическое исследование (делеция 22 хромосомы) – в работе, иммунологическое исследование – снижение IgG, IgM, отсутствие IgA.получает лечение: метипред ½ табл/сут.с постепенной отменой, вифенд, гамунекс 10 г в/в, панангин, диакарб, аскорутин, глицин. После проведенного клинического осмотра, обследования у ребенка имеет место быть диагноз: первичный иммунодефицит: синдром делеции 22 хромосомы (синдром и Джорджи)?. молекулярно генетическое исслеование в работе.

Учитывая возможность грибкового поражения (субплеврально расположенные очаги), назначена противогрибковая терапия.

По жизненным показаниям ребенок нуждается в проведении регулярной заместительной терапии препаратами иммуноглобулинов для в/в ведения в дозе 0,4 г/кг массы тела 1 раз в месяц, что составляет 10г.

Список использованных источников:

1. Бочков Н.П. Клиническая генетика. Учебник для вузов.- М. – ГЭОТАР-МЕД, 2010.- 448 с.

- 2. Ворсанова С.Г., Юров Ю.Б., Чернышов В.Н. Хромосомные синдромы и аномалии. Классификация и номенклатура.- Ростов-на-Дону, 1999.- 191 с.
- 3. Зерова Т.Е. та інші. Переваги молекулярно-цитогенетичних методів в діагностиці деяких хромосомних хвороб, які пов'язані з вродженими вадами серця (на прикладі САТСН22) //Збірник наукових праць співробітників КМАПО ім. П.Л. Шупіка. 10 видання (2).-Київ, 2000.- С.396-402.
 - 4. Садлер Т.В. Медична ембріологія за Лангманом. Львів: Наугілус, 2001. 550 с., 410 іл.
- 5. Gottlieb C, Li Z, Uzel G, Nussenblatt RB, Sen HN. Uveitis in DiGeorge syndrome: a case of autoimmune ocular inflammation in a patient with deletion 22q11.2. *Ophthalmic Genet*. Mar 2010
- 6. Staple L, Andrews T, McDonald-McGinn D, Zackai E, Sullivan KE. Allergies in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome) and patients with chronic granulomatous disease. *Pediatr Allergy Immunol*. May 2005;
- 7. Kaminsky, E. B., Kaul, V., Paschall, J., Church, D. M., Bunke, B., Kunig, D., Moreno-De-Luca, D., Moreno-De-Luca, A., Mulle, J. G., Warren, S. T., Richard, G., Compton, J. G., and 22 others. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13: 777-784, 2011.
 - 8. Lindsay E.A. Chromosomal microdeletions: dissecting del22q11 syndrome. Nat Rev Genet 2001; 2: 858-868.

Д.м.н., проф. Судакова Н.М., Лысенко А.В., Маркелова М.И

НИУ Белгородский Государственный Университет

ОСОБЕННОСТИ СОСТОЯНИЯ ЗДОРОВЬЯ НОВОРОЖДЕННЫХ ПОСЛЕ ВСПОМОГАТЕЛЬНЫХ РЕПРОДУКТИВНЫХ ТЕХНОЛОГИЙ

Аннотация

Проведен ретроспективный анализ течения беременности женщин после применения вспомогательных репродуктивных технологий. Были изучены клинико-анамнестические показатели раннего неонатального периода новорожденных, родившихся после применения ВРТ с учетом соматического и гинекологического анамнеза матери, установлена структура заболеваемости новорожденных. Данные исследования могут быть использованы в рамках учебного процесса дисциплин «неонатология», «акушерство и гинекология», а также для дальнейшего изучения проблемы состояния здоровья детей после ВРТ.

Ключевые слова: вспомогательные репродуктивные технологии, факторы риска, перинатальные исходы, IVF, the risk factors, health of neonate.

Использование вспомогательных репродуктивных технологий (ВРТ) в лечении бесплодия в последние годы является наиболее актуальной проблемой, как с позиции акушера, так и с позиции неонатолога, поскольку многие моменты требуют дальнейшего изучения.

Исследование выполнено на базе Перинатального центра БОКБ Св. Иоасафа г. Белгорода за период 2008-2011 гг. Основную группу составили 373 женщины после ВРТ, группу сравнения - 125 женщин, беременность которых наступила естественным путем.

У женщин с ЭКО превалирует отягощенность гинекологическими заболеваниями инфекционного генеза — в 65,5% случаях, доброкачественные новообразования половых органов — 32,2%. Среди факторов бесплодия более половины (51,3%) составляет трубное происхождение. В структуре соматической патологии у женщин с ЭКО не выявлено значимых состояний, которые могли бы ухудшить состояние здоровья новорожденных. Течение беременности в обеих группах осложнялось фетоплацентарной недостаточностью у 94,6% беременных основной группы и у 63,2% в группе сравнения. Угроза невынашивания как в первой, так и во второй половине беременности соответственно в 1,8 и 1,6 раза встречается чаще у женщин с ВРТ.

У 373 женщин основной группы родился 591 ребенок, при этом было 85 двоен и 16 троен. Всего живыми было 590 детей. В группе детей после индуцированной беременности недоношенными на сроке гестации 28 -36 недель родилось 76 (12,8%) младенцев, в группе сравнения 15 (12%) детей рождены при сроке 34-36 недель гестации. Более половины детей (56,6%) у матерей после применения ВРТ рождаются в умеренной асфиксии, случаев тяжелой асфиксии в обеих группах зарегистрировано не было. Показатели массы тела имеют широкий уровень колебаний: до $1000 \, \Gamma - 0,6\%$: 1001- $1500 \, \Gamma - 6,9\%$; 1501-2500 - 16%; 2501-3500 - 47,4%.

Основным диагнозом у детей основной группы явилась церебральная ишемия гипоксически-ишемического генеза (n=198; 40,4%). Новорожденных с ЗВУР было больше в основной группе (n=164; 33,5%), чем в группе сравнения (n=32; 25,6%). Следует отметить, что в обеих группах одинаково часто диагностированы малые аномалии развития сердца (аномальные хорды левого желудочка сердца, открытое овальное окно), но пиелоэктазия чаще выявлялась в основной группе (8,7%). Проявления ВУИ и респираторный дистресссиндром отмечались только в группе новорожденных после ВРТ соответственно в 125 (25,5%) и 114 (23,2%) случаях.

Заключение. Таким образом, новорожденные, родившиеся в результате применения ВРТ в связи с разными причинами бесплодия, имеют высокий процент рождения в условиях многоплодия и сопряженной с ним недоношенности, ЗВУР, у них выше частота поражения центральной нервной системы, проявлений ВУИ, респираторных нарушений. Полученные результаты о состоянии здоровья детей от матерей после применения методов ВРТ указывают на необходимость улучшения наблюдения и усовершенствования комплекса мероприятий по ведению данной категории женщин и их новорожденных.

Литература

- 1. Chauhan S.P., Magann E.F., Scott J.R. et al. Cesarean delivery for fetal distress: rate and risk factors // Obstet. Gynecol. Surv. 2003. V. 58, № 5. P. 337-350.
- 2. Рищук С.В., Мирский В.Е. Состояние здоровья детей и особенности течения беременности после применения вспомогательных репродуктивных технологий // TERRA MEDICA NOVA, 2010. №1. С. 34-37.
- 3. Евсюкова И.И., Маслянюк Н.А. Состояние новорожденных и их дальнейшее развитие при многоплодной беременности после ЭКО //Проблемы репродукции. − 2005. №2. − С.52-54.
- 4. Кузнецова В.С. и др. Особенности адаптации в раннем неонатальном периоде новорожденных детей, рожденных у женщин с бесплодием в анамнезе после циклов экстракорпорального оплодотворения (ЭКО) // Журнал теоретической и практической медицины // 2004.- т.2.- №1.- с.59-62.
- 5. F.M. Helmerhorst, D.A. Perquin, M.J.Keirse Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. //BMJ 2004; vol.328. P.261 (31 Jan.)