БЯЛОВСКИЙ Ю.Ю., СУЧКОВА Ж.В., БУЛАТЕЦКИЙ СВ., ШУСТОВА С.А.

РязГМУ им. академика И.П. Павлова, Рязань, Россия

lvl2@yandex.ru

СРАВНИТЕЛЬНЫЙ АНАЛИЗ АППАРАТНО-ПРОГРАММНЫХ КОМПЛЕКСОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ИЗУЧЕНИЯ ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА

В последнее время получают развитие новые технологии выявления состояний, предшествующих развитию болезни. В основе этих технологий лежит анализ биологических ритмов организма человека, выделяемых из электрокардиосигналов. Среди аппаратно-программных комплексов (АПК), рекомендованных Минздравом России в качестве стандартных средств для исследования вариабельности сердечного ритма в клинической практике и прикладной физиологии следует назвать «Варикард-1.41» и «Динамика-100».

Цель: проведение сравнительных испытаний информационных возможностей аппаратнопрограммных комплексов «Динамика-100» и «Варикард-1.41» в части математического анализа вариабельности сердечного ритма.

Объект: 74 практически здоровых ис пытуемых обоего пола в возрасте от 18 до 25 лет.

Методы: с помощью АПК «Динамика-100» и «Варикард-1.41» проводилась параллельная (в реальном масштабе времени) регистрация ритма сердца с последующим сопоставлением информационных возможностей в части математического анализа вариабельности сердечного ритма.

АПК «Варикард 1.41» создан Институтом Внедрения Новых Медицинских Технологий «РАМЕНА» (г. Рязань) в содружестве с Институтом Медико-Биологических Проблем (г. Москва) и Московской Медицинской Академией, а также с рядом других научно-исследовательских учреждений. Данный аппаратно-программный комплекс рекомендован Минздравом России в качестве стандартного средства для исследования вариабельности сердечного ритма в клинической практике и прикладной физиологии. АПК «Варикард-1.41» обеспечивает:

- вывод на экран монитора в режиме **реального** времени одновременно двух графиков электрокардиограммы (ЭКГ) и кардиоинтервалограммы (КИГ);
 - автоматическое распознавание R зубцов, артефактов, экстрасистол и аритмий;
- автоматизированную корректировку ошибок автоматического распознавания в графическом интерактивном режиме, аппроксимацию артефактов и экстрасистолических элементов ЭКГ;
- автоматическое формирование динамических (временных) рядов RR кардиоинтервалов по распознанным элементам;
- автоматический анализ временных рядов RR кардиоинтервалов статистическими, автокорреляционными и спектральными методами. Расчет показателей спектрального анализа проводится в четырех частотных диапазонах: высокочастотные колебания (HF) в диапазоне $0.5+0.15~\Gamma$ ц (2+7~ сек); низкочастотные колебания (LF) в диапазоне $0.15+0.05~\Gamma$ ц (7+20~ сек); сверхнизкочастотные колебания (VLF) в диапазоне $0.05+0.015~\Gamma$ ц (20+70~ сек); ультранизкочастотные колебания (ULF) в диапазоне $0.015+0.001~\Gamma$ ц (10+1000~ сек);
- сохранение результатов анализа вариабельности сердечного ритма, а также исходных данных (сигналов ЭКГ и динамических рядов кардиоинтервалов) в банке данных с возможностью обращения к ним для более подробного анализа или сравнительной оценки;
- использование для обработки и анализа данных различных видов программных средств и возможность их развития и дополнения.

Цифровой анализатор биоритмов «Динамика-100» разработан Центром биомедицинских исследований «ДИНАМИКА» (г. Санкт-Петербург) и представляет собой аппаратнопрограммный комплекс, предназначенный для анализа биологических ритмов организма человека, выделяемых из электрокардиосигнала в широкой полосе частот. В основу метода положена новая информационная технология анализа биоритмологических процессов «фрактальная нейродинамика». АПК «Динамика-100» одобрен Комитетом по новой медицинской технике МЗ РФ и ГВМУ МО. Система прошла клиническую апробацию в ведущих медицинских учреждениях и научно-исследовательских институтах Минздрава и Министерства Обороны Российской Федерации. При создании данной системы использованы последние достижения биологии, физиологии, генетики и клинической медицины, на основе которых разработаны новые высокоинформативные показатели для оценки функционального состояния организма.

АПК «Динамика-100» позволяет:

- в режима скрининга определять уровень и резервы сердечно-сосудистой, вегетативной и центральной регуляции, а также оценивать отклонения этих показателей от нормы:

- оценивать уровень скомпенсированное $^{\rm TM}$ и энергетические ресурсы организма на различных уровнях регуляции;
- в режиме биологической обратной связи определять возможности саморегуляции, оценивать и прогнозировать психофизическое состояние человека;
- в режиме динамического наблюдения контролировать функциональное состояние пациента и оценивать эффективность различных методов терапии при проведении лечебнопрофилактических мероприятий;
- по результатам компьютерного анализа формировать комплексное медицинское заключение и выдавать необходимые рекомендации.

Результаты: Оба исследуемых АПК имеют возможность проведения записи кардиосигналов с объемом выборки - 3-5 минут (Short-term Recordings). При этом реализуется анализ вариабельности сердечного ритма в системе оценок, рекомендуемых стандартами Европейского Кардиологического общества и Североамериканского общества электрофизиологии

Как следует из таблицы 1, сравниваемые АПК реализуют анализ вариабельности сердечного ритма в системе оценок, рекомендуемых стандартами Европейского Кардиологического общества и Североамериканского общества электрофизиологии.

Вместе с тем, число экспертных оценок, осуществляемых АПК «Варикард-1.41» значительно превышает таковые у «Динамика-100», особенно в части спектрального анализа сердечного ритма. Так, если «Варикард-1.41» ведет оценку 10 показателей спектрального анализа, то «Динамика-100» - только 7.

Основные показатели вариабельности сердечного ритма, реализуемые аппаратнопрограммными комплексами «Динамика-100» и АПК «Варикард-1.41»

	ПОКА- ЗАТЕЛИ	НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ	АПК «Вари- кард- 1.41»	АПК «Дина- мика- 100»		
Pac		х параметров вариабельности	•			
_1	HR	Частота пульса	+	+		
2	SDNN	Стандартное отклонение полного массива кардиоинтервалов	+	+		
3	CV	Коэффициент вариации полного массива карлиоинтервалов	+	+		
Оце	Оценка показателей порядковой статистики					
4	MxDMn (TINK*)	Разность между максимальным и минимальным значениями карлиоинтервалов	+	+		
5	Mo	Мода	+	+		
6	AMo	Амплитуда моды	+	+		
Pac	нет основны	х кардиоинтервалометрических характеристик				
7	Narr	Число аритмичных сокращений	+	-		
8	MxRMn	Отношение максимального по длительности кардиоинтервала к минимальному	+	-		
9	RMSSD	Среднеквадратичная разносная характеристика	+	+		
10	SDSD	Стандартное отклонение значений разностных характеристик	+	+		
11	NN50 count	Число пар кардиоинтервалов с разностью более 50 мс.	+	+		
12	pNN50	Число разностных характеристик, значения которых более 50 мс в % к общему числу кардиоинтервалов в массиве	+	+		
13	SI	Стресс индекс (индекс напряжения регуляторных систем)	+	-		
Авт	окорреляцио	нный анализ: оценка полно юй структуры и анализ периодических ком	ипоненто)B		
	CC1	Значение первого коэффициента автокорреляционной функции	+	X		
15	CC0	Число сдвигов автокорреляционной функции до получения значения коэффициента корреляции меныне нуля	+	+		
Оце	нка показат	елей спектрального анализа				
	HF, (%)	Мощность спектра высокочастотного компонента вариабельности в % от суммарной мощности колебаний	+	+		
17	LF, (.%)	Мощность спектра низкочастотного компонента вариабельности в % от суммарной мощности колебаний	+	+		
18	VLF, (%)	Мощность спектра сверхнизкочастотного компонента вариабельности в % от суммарной мощности колебаний	+	+		
19	TP	Суммарная мощность спектра ВСР	+			
20	HFmx	Максимум мощности спектра высокочастотного компонента ВСР в мс ²		+		
21	LFmx	Максимум мощности спектра низкочастотного компонента ВСР в мс ²	+	+		
22	VLFmx	Максимум мощности спектра сверхнизкочастотного компонента BCP в мс ²	+	+		

Таблица

				Юлица
23	Hfav	Среднее значение мощности спектра высокочастотного компонента ВСР в мс ²	+	-
24	Lfav	Среднее значение мощности спектра низкочастотного компонента BCP в мс ²	+	-
25	VLFav	Среднее значение мощности спектра сверхнизкочастотного компонента BCP в мс ²	+	-
26	HFt	Доминирующий период высокочастотного компонента спектра ВСР	+	-
27	LFt	Доминирующий период низкочастотного компонента спектра ВСР	+	-
28	VLFt	Доминирующий период сверхнизкочастотного компонента спектра BCP	+	-
29	Hfnorm	Нормированное значение мощности спектра высокочастотного компонента ВСР в мс ²		-
30	Lfnorm	Нормированное значение мощности спектра низкочастотного компонента ВСР в мс ²	+	-
31	VLFnorm	Нормированное значение мощности спектра сверхнизкочастотного компонента ВСР в мс ²	+	-
32	ULF %	Мощность спектра ультранизкочастотного компонента ВСР в % от суммарной мощности колебаний	+	ı
33	ULFmx	Максимум мощности спектра ультранизкочастотного компонента вариабельности в мс ²	+	-
34	ULFav	Среднее значение мощности спектра сверхнизкочастотного компонента вариабельности в мс ²	+	-
35	ULFt	Доминирующий период сверхнизкочастотного компонента спектра вариабельности сердечного ритма	+	-
36	ULF	rnorm Нормированное значение мощности спектра ультранизкочастотного компонента вариабельности в мс ²		ı
Общая	и оценка	состояния регуляторных систем		
37	(LF/HF)a	Отношение средних значений низкочастотного и высокочастотного компонента ВСР	+	+
38	IC	Индекс централизации	+	+
	SNCA	Индекс активности подкорковых нервных центров	+	+
40	IARS	Показатель (индекс) активности эегуляторных систем - ПАРС	+	-4-

На основании **анализа** вариабельности сердечного ритма, оба АПК реализуют медикофизиологические заключения о состоянии системы вегетативной регуляции кровообращения и оценкой стрессорного эффекта воздействия на организм факторов окружающей среды (табл. 2).

Таблица2 Медико-физиологические заключения о состоянии системы вегетативной регуляции кровообращения и оценки стрессорного эффекта воздействия на организм факторов окружающей среды

Медико-физиологические заключения о состоянии системы вегетативной регуляции кровообращения и оценки стрессорного эффекта воздействия на организм факторов окружающей среды Характеристики систем вегетативной регуляции кровообращения и виды диагностических заключении	АПК «Варикард- 1.41»	АПК «Динамика- 100»		
А. Суммарный эффект регуляции				
Выраженная тахикардия	+	+		
Умеренная тахикардия	+	+		
Нормокардия	+	+		
Умеренная брадикардия	+	+		
Выраженная брадикардия	+	+		
Б. Функции автоматизма				
Стабильный ритм	+	-		
Умеренная стабильность сердечного ритма	+	-		
Нарушений ритма не выявлено	+	-		
Умеренная аритмия	-Γ	-		
Выраженная аритмия	+	-		
В. Вегетативный гомеостаз				

Выраженное преобладание симпатической нервной системы	+	+
Умеренное преобладание симпатической нервной системы	+	+
Разновесие симпатического и парасимпатического отделов вегетативной		+
нервной системы		
Умеренное преобладание парасимпатической нервной системы	+	+
Выраженное преобладание парасимпатической нервной системы	+	+
Г. Устойчивость регуляции		
Наблюдаемая нестабильность ритма сердца связана с переходными	+	=
процессами		
Д. Активность подкорковых нервных центров		
Д1. Вазомоторный (сосудистый) центр		
Выраженное усиление активности вазомоторного центра, регулирующего	+	-
сосудистый тонус		
Умеренное усиление активности вазомоторного центра, регулирующего	+	-
сосудистый тонус		
Нормальная активность подкоркового сердечно-сосудистого центра	+	-
Умеренное ослабление активности вазомоторного центра,	+	-
регулирующего сосудистый тонус		
Выраженное ослабление активности вазомоторного центра,	+	-
регулирующего сосудистый тонус		
Д2. Симпатический сердечно-сосудистый подкорковый нервный центр		
Выраженное усиление активности симпатического сердечно-сосудистого	+	+
центра		
Умеренное усиление активности симпатического сердечно-сосудистого	+	+
центра		
Нормальная активность подкоркового сердечно-сосудистого центра	+	+
Умеренное ослабление активности симпатического сердечно-	+	+
сосудистого центра		
Выраженное ослабление активности симпатического сердечно-	+	+
сосудистого центра		

При анализе дополнительных возможностей сравниваемых АПК следует отметить, что «Динамика-100» позволяет осуществлять нейрофрактальный анализ биологических ритмов. Сопоставление характеристик этого анализа необходимо осуществлять с аппаратными средствами для исследования биоритмов (например, с электроэнцефалографическими регистраторами).

Заключение:

Оба исследуемых АПК имеют возможность проведения записи кардиосигналов с объемом выборки - 3-5 минут (Short-term Recordings). При этом реализуется анализ вариабельности сердечного ритма в системе оценок, рекомендуемых стандартами Европейского Кардиологического общества и Североамериканского общества электрофизиологии.

При опенке результатов анализг вариабельности сердечного ритма, значимых расхождений сравниваемых аппаратных средств не выявлено (p>0.05). Вместе с тем, отмечено существенно меньшее количество экспертных оценок по вариабельности сердечного ритма и медико-физиологического заключения о состоянии системы вегетативной регуляции кровообращения и оценки стрессорного эффекта воздействия на организм факторов окружающей среды у АПК «Динамика-100» по сравнению с «Варикард-1.41».

Нами выявлена большая помехоустойчивость у АПК «Варикард-1.41» по сравнению с АПК «Динамика-100». В связи с существованием инфракрасной развязки блока ввода кардиосигналов, АПК «Динамика-100;> весьма чувствителен к тепловым помехам и расстоянию между передатчиком сигнала и приемником. В АПК «Варикард-1.41» имеется, во-первых, возможность выбора временного интервала записи кардиоритма и, во-вторых, возможность математического анализа любого выделенного участка кардиоинтервалограммы. В АПК «Дичамика-100» осуществляется запись и обработка кардиоинтервалограммы длительностью только в 100 или 300 RR интервалов. Кроме того, к пользовательским недостаткам данного АПК следует отнести сложность в осуществлении экспортно-импортных операций с базой данных, отсутствие в выходных данных соотношения (динамики) исследуемых показателей при функциональных пробах, а также определенные неудобства при ручном редактировании кардиосигналов. Так же желательно использование для обработки и анализг данных различных видов программных средств и возможность их развития и дополнения.

К преимуществам АПК «Динамика-100» следует отнести мониторирование и динамическое наблюдение за изменениями показателей функционального состояния в реальном времени, оценку энергетического баланса организма и возможность суточного прогноза психофизиологической активности в режиме «биологические часы».