УДК 616.124.2-039.38

Ю.Э. ТЕРЕГУЛОВ^{1,2,3}, Е.Т. ТЕРЕГУЛОВА³, С.Д. МАЯНСКАЯ², З.К. ЛАТИПОВА²

1Республиканская клиническая больница МЗ РТ, 420064, г. Казань, Оренбургский тракт, д. 138

²Казанский государственный медицинский университет, 420012, г. Казань, ул. Бутлерова, д. 49

³Казанская государственная медицинская академия, 420012, г. Казань, ул. Бутлерова, д. 36

Ремоделирование левого желудочка: геометрические и электрокардиографические сопоставления

Терегулов Юрий Эмильевич — кандидат медицинских наук, заведующий кафедрой функциональной диагностики, доцент кафедры госпитальной терапии, заведующий отделением функциональной диагностики, тел. +7–917–264–70–04, e-mail: tereg2@mail.ru^{1,2,3} **Терегулова Елена Теодоровна** — кандидат медицинских наук, ассистент кафедры кардиологии, рентгенэндоваскулярной и сердечнососудистой хирургии, тел. +7–917–265–27–52, e-mail: elena_dt@mail.ru³

Маянская Светлана Дмитриевна — доктор медицинских наук, профессор, проректор по науке и инновациям, тел. +7-905-316-99-66, e-mail: smayanskaya@mail.ru²

Латипова Залия Камиловна — аспирант кафедры госпитальной терапии, тел. +7-987-285-33-52, e-mail: zaliya87@rambler.ru²

У 129 пациентов с гипертонической болезнью (ГБ) 1-3 степени в возрасте от 18 до 84 лет изучены взаимосвязи геометрического и электрофизиологического ремоделирования ЛЖ. Всем проведены эхокардиография и ЭКГ исследование в 12 стандартных отведениях. Векторкардиограмму (ВКГ) получали методом реконструкции из 12 стандартных отведений. Гипертрофию левого желудочка (ГЛЖ) диагностировали на основании общепризнанных электрокардиографических признаков, критериев Sokolow-Lyon и Cornell, а также при увеличении модуля максимального вектора в собственной плоскости ≥1,8 Мв. Геометрическая модель ГЛЖ определялась по классификации А. Ganau с соавт. (1992). Нормальная геометрия левого желудудочка выявлена у 52 пациентов (40,3%), концентрическое ремоделирование — у 18 больных (14%), концентрическая гипертрофия — у 29 (22,5%), а эксцентрическая гипертрофия — у 30 (23,3%) пациентов. По ЭКГ-ВЭГ критериям ГЛЖ выявлена у 60 (46,5%) пациентов, а у 69 больных (53,5%) ГЛЖ не диагностирована. У пациентов с нормальной геометрией по ЭКГ-критериям ГЛЖ выявлена у 36,5% больных, не диагностирована в 63,5% случаев. При концентрическом ремоделировании при ЭКГ ГЛЖ определялась у 50% больных, при концентрической гипертрофии — в 51,7% случаев, при эксцентрической гипертрофии — у 56,7% пациентов. Показано, что у больных гипертонической болезнью электрокардиографические критерии гипертрофии левого желудочка могут возникать без изменения массы миокарда левого желудочка и его геометрических характеристик.

Ключевые слова: артериальная гипертензия, гипертрофия левого желудочка, ремоделирование левого желудочка, диастолическая дисфункция.

Yu.E. TEREGULOV^{1,2,3}, E.T. TEREGULOVA³, S.D. MAYANSKAYA², Z.K. LATIPOVA²

¹Republican Clinical Hospital of Ministry of Health of the Republic of Tatarstan, 138 Orenburgskiy trakt, Kazan, Russian Federation, 420064

²Kazan State Medical University, 49 Butlerov St., Kazan, Russian Federation, 420012

³Kazan State Medical Academy, 36 Butlerov St., Kazan, Russian Federation, 420012

Remodeling of the left ventricle: geometrical and electrocardiographic comparisons

Teregulov Yu.E. — Cand. Med. Sc., Head of the Department of Functional Diagnostics, Associate Professor of the Department of Hospital Therapy, Head of the Department of Functional Diagnostics of the RCH MH of RT, tel. +7-917-264-70-04, e-mail: tereg2@mail.ru^{1,2,3}

Teregulova E.T. — Cand. Med. Sc., Assistant of the Department of Cardiology, Endovascular and Cardiovascular Surgery, tel. +7–917–265–27–52, e-mail: elena_dt@mail.ru³

Mayanskaya S.D. — D. Med. Sc., Vice-Rector for Science and Innovations, tel. +7-905-316-99-66, e-mail: smayanskaya@mail.ru² **Latipova Z.K.** — postgraduate student of the Department of Hospital Therapy, tel. +7-987-285-33-52, e-mail: zaliya87@rambler.ru²

In 129 patients with hypertensive disease1-3 degrees in age from 18 to 84 years was studied the relation between geometric and electrophysiological remodelling of the left ventricular. Patients were made echocardiography and 12-lead ECG. Vector electrocardiogram was made with reconstruction method in 12-lead ECG. The hypertrophy of the left ventricle (HLV) was diagnosed on the basis of the conventional electrocardiographic signs, criteria of Sokolow-Lyon and Cornell, and also at increase in the module of the maximum vector in proper plane ≥1,8 MV. The geometrical model of left ventricle myocardial hypertrophy was determined by A. Ganau classification et al. (1992). The normal geometry of the left ventricle is revealed in 52 patients (40,3%), concentric remodeling — in 18 patients (14%), concentric hypertrophy — in 29 (22,5%), and eccentric hypertrophy — in 30 (23,3%) patients. Criteria of EKG-VEG the HLV is revealed in 60 (46,5%) patients, and in 69 patients (53,5%) HLV is not diagnosed. In patients with normal geometry on an electrocardiogram criteria, the HLV is revealed in 36,5% of patients, it isn't diagnosed in 63,5% of cases. At concentric remodeling at an electrocardiogram the HLV was defined in 50% of patients, at a concentric hypertrophy in 51,7% of cases, at an eccentric hypertrophy at 56,7% of patients. It is demonstrated that patients with a hypertensive disease electrocardiographic criteria of a hypertrophy of the left ventricle can arise without change of mass of a myocardium of the left ventricle and its geometrical characteristics.

Key words: arterial hypertension, hypertrophy of the left ventricle, remodeling of the left ventricle, diastolic dysfunction.

Термин «гипертоническое сердце» используется для обозначения функциональных и морфологических изменений сердца, возникших по причине артериальной гипертензии (АГ) [1]. Синонимом гипертонического сердца можно считать ремоделирование левого желудочка (ЛЖ), хотя, по нашему мнению, этот термин имеет более узкое значение и отражает патологические изменения в миокардиальных клетках и интерстициальном пространстве, приводящих к гипертрофии миокарда, дилятации полостей и изменениям геометрических характеристик левого желудочка [2]. Функциональные изменения, связанные с нарушением внутрисердечной гемодинамики, сокращения или расслабления миокарда не входят в понятие ремоделирования ЛЖ.

Актуальность диагностики поражения сердца при АГ не вызывает сомнения, так как известно, что гипертоническое сердце рассматривается как самостоятельный фактор риска развития жизнеугрожающих состояний: инфаркт миокарда, аритмии сердца, внезапная сердечная смерть и др. Для диагностики гипертрофии миокарда и расширения полости ЛЖ используются электрокардиографические методы, включая векторкардиографию, и ультразвуковые методы исследования сердца. Эти методы, несмотря на то, что позволяют выявить гипертрофию миокарда и дилатацию полости ЛЖ, используют различные подходы. Если при эхокардиографии наличие гипертрофии миокарда ЛЖ оценивают по измерению его полости, толщины стенок и расчету массы миокарда, то электрокардиография позволяет выявить наличие гипертрофии и увеличение полости ЛЖ, измеряя величину суммарного вектора электрических сил желудочков. Учитывая, что мы, по сути, имеем дело с разными процессами, которые происходят в миокарде под влиянием повышенного артериального давления - изменение геометрии ЛЖ и увеличение электрической активности миокарда, предлагаем выделить геометрическое и электрофизиологическое ремоделирование ЛЖ. Под геометрическим ремоделированием мы понимает изменение как массы миокарда (гипертрофия), так и геометрии полости ЛЖ. Электрофизиологическое ремоделирование — увеличение суммарного вектора возбуждения желудочков.

Диастолическая дисфункция (ДД) чрезвычайно характерна для АГ и обусловлена как гипертрофией левого желудочка (ГЛЖ), так и увеличением содержания коллагена в миокарде,

что приводит к повышению его ригидности [3]. Таким образом, ДД связана с морфологическими изменениями в сердечной мышце, которые возникают за счет повышенного артериального давления.

Несмотря на большое количество научных работ, посвященных изменению сердца при АГ, остаются малоизученными вопросы взаимосвязи геометрического ремоделирования миокарда с его электрофизиологическими характеристиками и функциональными нарушениями внутрисердечной гемодинамики.

Целью работы явилось изучение взаимосвязи геометрического и электрофизиологического ремоделирования ЛЖ у больных гипертонической болезнью (ГБ).

Материалы и методы. Обследованы 129 пациентов с ГБ 1-3 степени в возрасте от 18 до 84 лет, $56,9\pm12,8$ ($M\pm\sigma$), из них 77 (60%) — женщины и 52 (40%) — мужчины. У всех пациентов показатели тиреоидных гормонов находились в пределах нормы. Продолжительность гипертонии составляла от 1 до 29 лет, в среднем $10,7\pm7,5$ лет. Из исследования исключались больные с перенесенным инфарктом миокарда, с локальным нарушением сократительной функции левого желудочка, ожирением III-IV степени.

Методы исследования. Всем больным проводилось электрокардиографическое (ЭКГ) исследование в 12 стандартных отведениях на аппарате АТ 102 фирмы Shiller с компьютерной программой Sema 200. Векторкардиограмму (ВКГ) получали методом реконструкции из 12 стандартных отведений. ГЛЖ диагностировали на основании общепризнанных электрокардиографических признаков, критериев Sokolow-Lyon и Cornell, а также при увеличении модуля максимального вектора в собственной плоскости ≥1,8 Мв [4, 5].

Эхокардиография выполнялась на ультразвуковом аппарате IE 33 фирмы Philips, использовался фазированный датчик S 5-1 МГц. Перед проведением эхокардиографического исследования и измерением артериального давления пациент находился в горизонтальном положении в течение 15 мин. Исследование проводилось в М и В режимах в стандартных эхографических позициях. Толщина стенок левого желудочка и размеры полости определялись из парастернальной позиции длинной оси левого желудочка в М режиме. Масса

миокарда левого желудочка (ММЛЖ) определялась по формуле R. Devereux и N. Reicheck [6]. Измерения осуществлялись на протяжении трех циклов, а затем усреднялись. Из исследования исключались больные имевшие сегментарные нарушения сократимости.

Индекс массы миокарда левого желудочка (ИММЛЖ) рассчитывался как отношение ММЛЖ к площади поверхности тела. За нормальные значения ИММЛЖ принимали 125 гр/м². Относительная толщина стенок (ОТС) ЛЖ определялась как (ТМЖП+ТЗСЛЖ)/КДРЛЖ, где ТМЖП — толщина межжелудочковой перегородки, ТЗЛЖ — толщина задней стенки левого желудочка, КДРЛЖ — конечно-диастолический размер левого желудочка. За повышение ОТС принимали значения 0,45 и более. Геометрическая модель ГЛЖ определялась по классификации А. Ganau с соавт. (1992) [7]. Левое предсердие (ЛП) измерялось в парастернальной позиции в М режиме.

Диастолическую дисфункцию (ДД) миокарда правого и левого желудочка определяли по соотношению пиковых скоростей диастолического потока (Е/А) на митральном и трикуспидальном клапанах и времени изоволюмического расслабления (IVRT). Диагностировалась диастолическая дисфункция первого типа (ДД) при E/A<1 и IVRT >100 мс.

По модели сердечно сосудистой системы А.Э. Терегулова рассчитывали следующие параметры: коэффициент объемной упругости (КОУ), среднее артериальное давление (срАД), общее периферическое сосудистое сопротивление (ОПСС), КОУ/ОПСС [8]. Артериальное давление САД и ДАД определяли аускультативным методом, пульсовое артериальное давление (ПАД) рассчитывали по формуле САД-ДАД, ударное артериальное давление (АДуд) рассчитывали по формуле САД-срАД, ударный объем (УО),

ЧСС определяли при эхокардиографии методом Тейхольца, минутный объем крови (МОК) л/мин — по формуле МОК=УО*ЧСС, СИ — по формуле МОК/S, где S — площадь поверхности тела в $\rm M^2$.

Статистическую обработку полученных данных проводили с помощью компьютерных программ Statistica 8.0 и Biostat. Средние значения представлены как $M\pm\sigma$. Вероятность межгрупповых различий определяли методом с помощью критериев Стьюдента, достоверность различий качественных данных по критерию χ^2 .

Результаты исследования и обсуждение

По данным эхокардиографического исследования, нормальная геометрия ЛЖ выявлена у 52 пациентов (40,3%), концентрическое ремоделирование — у 18 больных (14%), концентрическая гипертрофия — у 29 (22,5%), а эксцентрическая гипертрофия — у 30 (23,3%) пациентов. В соответствии с классификацией А. Ganau с соавт. (1992) группы с нормальной геометрией и концентрическим ремоделированием составляли пациенты с нормальным ИММЛЖ, а с концентрической и эксцентрической гипертрофией — с повышенными значениями ИММЛЖ. Таким образом, ГЛЖ по критерию увеличения ИММЛЖ выявлена у 59 пациентов (45,7%), отсутствие ГЛЖ наблюдалось у 70 (54,3%).

По ЭКГ-ВЭГ критериям ГЛЖ выявлена у 60 (46,5%) пациентов, а у 69 больных (53,5%) ГЛЖ не диагностирована. Проведен анализ выявляемости ГЛЖ по ЭКГ-ВКГ и эхокардиографическим критериям в подгруппах больных в зависимости от типа геометрического ремоделирования. У пациентов с нормальной геометрией ЛЖ по ЭКГ-ВКГ критериям ГЛЖ выявлена у 36,5% больных, не диагностирована в 63,5% случаев. При концентрическом ремоделировании ЛЖ при электро-

Таблица 1.

Эхокардиографические данные в подгруппах пациентов в зависимости от выявления ГЛЖ электрокардиографическим методом

	ЭКГ-ВКГ кри		
Данные эхокардиографии	есть n=70	нет n=59	p
КСРЛЖ в мм	2,92±0,39	3,0±0,261	0,18
КДРЛЖ в мм	4,76±0,4	4,78±0,42	0,78
ТМЖП в мм	0,92±0,11	0,92±0,1	1,0
ТЗСЛЖ в мм	0,89±0,09	0,89±0,06	1,0
ЛП в мм	3,48±0,67	3,34±0,34	0,15
ММЛЖ в г	183±46,8	186±31,2	0,68
ИММЛЖ в г/м²	101±14,5	102±13,9	0,69
ОТС	0,38±0,037	0,37±0,04	0,83

Примечание: р — вероятность различия данных между подгруппами

Таблица 2. Параметры гемодинамики у больных ГБ с разными типами ремоделирования левого желудочка

			*								
Тип ре-	ЭKГ-BKΓ ĸ	ЭКГ-ВКГ критерии ГЛЖ	ACC	АДС	АДА	ПАД	АДУА	Ср АД	KOy	OUCC	KOY
модели- рования	Наличие	Кол-во (%)	уд. в мин. М±о	MM. pτ. cτ. Μ±σ	мм. рт. ст. М±о	ΜΜ. pτ. cτ. Μ±σ	мм. рт. ст. М±о	мм. рт. ст. М±о	дин/мл М±о	дин*сек/мл М±σ	/OIICC M±σ
T C MC C	нет	33 (63,5%)	80,4 ±15,7	151 ±12,7	90 ±10,1	60,2 ±11,1	33,3 ±6,64	117 ±9,79	1586 ±429	1689 ±432	0,96 ±0,22
ная гео- метрия N=52	есть	19 (36,5%)	84,8 ±13,0	151 ±12,5	89,2 ±8,37	61,6 ±14,4	34,4 ±8,48	116 ±7,58	1808 ±735	1764 ±687	1,07 ±0,36
		d	0,31	1,0	0,77	2′0	0,61	2,0	0,17	0,63	0,18
Концен-	нет	(%05) 6	80 ±10,6	146 ±10,4	87 ±16,1	59,4 ±11,8	33,2 ±7,17	113 ±13,0	1890 ±489	1995 ±526	1,0 ±0,37
ское ре- модели- рование	есть	(%05) 6	80,4 ±10,3	152 ±10,0	91 ±7,82	60,6 ±7,27	33,7 ±4,21	118 ±8,21	2328 ±693	2440 ±430	0,96 ±0,26
N=18		d	0,94	0,23	0,51	8'0	0,86	0,34	0,14	0,067	62'0
Кон-	нет	14 (48,3%)	79,6 ±16,5	153 ±13,3	93 ±12,5	60,4 ±11,2	33,6 ±6,45	119 ±11,7	1795 ±907	2037 ±1208	0,93 ±0,31
ческая гипер- трофия	есть	15 (51,7%)	73,7 ±10,9	167 ±19,4	91 ±11,9	76 ±18,8	42,7 ±11,2	125 ±12,6	1960 ±800	1947 ±550	1,02 ±0,27
N=29		р	0,26	0,033	99'0	0,012	0,012	0,196	0,61	8′0	0,41
Экс-	нет	13 (43,3%)	70,5 ±8,83	157 ±26,4	93 ±10,9	63,5 ±18,2	35,3 ±10,5	121 ±16,9	1277 ±435	1568 ±392	0,82 ±0,21
ческая гипер- трофия	есть	17 (56,7%)	75,5 ±12,4	149 ±15,7	90 ±10,1	58,5 ±16,2	33,1 9,64	116 ±9,62	1170 ±403	1411 ±309	0,84 ±0,24
N=30		đ	0,23	0,31	0,44	0,43	0,56	0,31	0,49	0,22	0,81

Примечание: р — вероятность различия пациентов с наличием ЭКГ критериев ГЛЖ и без них

Таблица 3. Диастолическая дисфункция у больных ГБ

Геометрическая модель ЛЖ	ЭКГ-ВКГ критерии ГЛЖ		Диастолическая дисфункция		р
	наличие	кол-во (%)	есть	нет	
Нормальная геометрия	нет	33	18 (54,5%)	15 (45,5%)	0,039
N=52	есть	19	15 (78,9%)	4 (21,1%)	
Геометрическое ремоделирование ЛЖ N=77	нет	36 (48,8%)	31 (86,1%)	5 (13,9%)	
	есть	41 (53,2%)	34 (82,9%)	7 (17,1%)	0,945

Примечание: р — вероятность различия долей пациентов с диастолической дисфункцией и без нее в группах пациентов с нормальной геометрией и геометрическим ремоделирования по критерию χ2

кардиографическом исследовании ГЛЖ определялась у 50% больных, при концентрической гипертрофии в 51,7% случаев, при эксцентрической гипертрофии — у 56,7% пациентов. Полученные данные у больных с ремоделированием ЛЖ согласуются с известным мнением о низкой чувствительности электрокардиографических методов по выявлению ГЛЖ [9]. Но, в то же время, мы выявили ГЛЖ ЭКГ-ВКГ методом в подгруппе больных с нормальной геометрией, для которых характерно нормальные значения массы миокарда и ОТС. У этой группы больных мы провели анализ эхокардиографических данных в подгруппах с выявленной ГЛЖ и не выявленной ГЛЖ электрокардиографическим методом (табл. 1).

Как видно из представленных данных, размеры полостей ЛЖ и ЛП, толщина стенок, масса миокарда не отличались у пациентов с ЭКГ-ВКГ признаками ГЛЖ от больных, у которых они отсутствовали. Полученные данные согласуются с результатами исследования В.И. Маколкина и соавт (1999), которое показало, что ВКГ позволяет выявить у 20% больных ранние отклонения электрической активности миокарда ЛЖ, при отсутствии явных морфологических изменений в виде увеличения массы миокарда. Авторы считают, что электрофизиологические изменения являются следствием гиперфункции сердечной мышцы в ответ на гемодинамическую перегрузку. Таким образом, можно предполагать, что у больных АГ электрофизиологическое ремоделирование миокарда ЛЖ может возникать раньше, чем увеличивается масса миокарда и изменяется полость ЛЖ, т.е. возникает его геометрическое ремоделирование.

Фремингемское исследование продемонстрировало неблагоприятное прогностическое влияние выявленной при электрокардиографии ГЛЖ. Было изучено прогностическое значение изменения амплитудных характеристик ЭКГ у больных АГ с диагностированной ГЛЖ эхокардиографическим методом. Так, у жителей Фремингема с исходной ГЛЖ при пятилетнем наблюдении было зарегистрировано последовательное увеличение или снижение амплитудного критерия Cornel. Выявлено, что при повышении критерия Cornel повышался сердечно-сосудистый риск, а при его снижение синхронно уменьшался и риск разви-

тия сердечно-сосудистых осложнений [10]. В то же время прогностическое значение изменения амплитудных характеристик ЭКГ у больных с АГ без ГЛЖ неясно и требует изучения.

Нами проведен анализ выявления ГЛЖ методом ЭКГ-ВКГ в зависимости от параметров гемодинамики и типов геометрического ремоделирования. Данные представлены в таблице 2.

У больных с нормальной геометрией, концентрическим ремоделированием и эксцентрической гипертрофией не найдено достоверных различий по всем изученным параметрам гемодинамики в зависимости от выявления и не выявления ГЛЖ. У пациентов с концентрической гипертрофией и ЭКГ-ВКГ признаками ГЛЖ значения АДС, ПАД и АДуд были достоверно выше, чем у пациентов, у которых эти критерии не были выявлены. Эти данные могут указывать на определенное значение фактора нагрузки давлением на формирование электрофизиологического ремоделирования миокарда ЛЖ.

Изучено наличие ДД у больных ГБ в зависимости от выявления ЭКГ-ВКГ критериев ГЛЖ (табл. 3).

Как видно из представленных данных у больных ГБ и нормальной геометрией ЛЖ ДД достоверно чаще выявлялась у пациентов с ЭКГ-ВКГ критериями ГЛЖ (78,9%), чем без них (54,5%). При развитии геометрического ремоделирования различий в возникновении ДД у больных, имеющих ЭКГ-ВКГ критерии ГЛЖ и без них, не выявлено.

Можно предположить, что электрофизиологическое ремоделирование миокарда является проявлением структурной перестройки миокарда, влияет на формирование ДД, тем самым способствуя развитию нарушения внутрисердечной гемодинамики. Формирование гипертонического сердца у больных с артериальными гипертензиями является сложным многофакторным процессом, который включает и изменение электрических свойств миокарда, приводя к электрофизиологическому ремоделированию, и к изменению полости, толщины стенки ЛЖ, вызывая геометрическое ремоделирование. Причем последовательность этих процессов может быть различна, что, несомненно, необходимо учитывать при оценке сердечно-сосудистых рисков.

Таким образом, у больных ГБ электрокардиографические критерии ГЛЖ могут возникать без изменения массы миокарда левого желудочка и его геометрических характеристик.

ЛИТЕРАТУРА

- 1. Шахов Б.Е. Эхокардиографические критерии «гипертонического сердца» монография / Б.Е. Шахов, Б.В. Белоусов, Н.Ю. Демидова. Н. Новгород: Издательство Нижегородской государственной медицинской академии, 2009. 184 с.
- 2. Васюк Ю.Л. Особенности систолической функции и ремоделирования левого желудочка у больных артериальной гипертензией и ишемической болезнью сердца / Ю.А. Васюк // Сердечная недостаточность. 2003. Т. 4, \mathbb{N}^{0} 2 (18). С. 107-110.
- 3. Шляхто Е.В. Структурно-функциональные изменения миокарда у больных гипертонической болезнью / Е.В. Шляхто, А.О. Конради, Д.В. Захаров, О.Г. Рудоманов // Кардиология. 1999. № 2. С. 49-55.
- 4. Функциональная диагностика сердечно-сосудистых заболеваний / Под ред. Ю.Н. Беленкова, С.К. Тернового. М.: ГЭОТАР-Медиа, 2007. 976 с.
- 5. Романчук П.И. Векторкардиографический мониторинг гипертрофии левого желудочка у больных с артериальными гипертензиями / П.И. Романчук, Н.Н. Крюков, А.Н. Волобуев и др. // Тез докладов симпозиума «Компьютерная электрокардиография на рубеже столетий». Москва, 1999. С. 61-65.

- 6. Devereux R.B. Echocardiographic determination of left ventricular mass in man / R.B. Devereux, N. Reicheck // Circulation. 1977. N $^\circ$ 55. P. 613-618.
- 7. Ganau A. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension / A. Ganau, R.B. Devereux, M.J. Roman et al. // J. Am. Coll. Cardiol. 1992. \mathbb{N}^{0} 19 (1). P. 1550-1558.
- 8. Терегулов Ю.Э. Жесткость артериальной системы как фактор риска сердечно-сосудистых осложнений: методы оценки / Ю.Э. Терегулов, А.Э. Терегулов // Практическая медицина. 2011. № 4 (52). С. 133-137.
- 9. Schillaci G. Improved electrocardiographic diagnosis of left ventricular hypertrophy / G. Schillaci, P. Verdecchia, C. Borgioni et al. // Am. J. Cardiol. 1994. № 74 P. 714-719.
- 10. Levy D. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy / D. Levy, M. Salomon, R.B. D'Agostino et al. // Circulation. 1994. N° 90. P. 1786-1793.

УВАЖАЕМЫЕ АВТОРЫ!

Перед тем как отправить статью в редакцию журнала «Практическая медицина», проверьте:

- Направляете ли Вы отсканированное рекомендательное письмо учреждения, заверенное ответственным лицом (проректор, зав. кафедрой, научный руководитель), отсканированный лицензионный договор.
- Резюме не менее 6–8 строк на русском и английском языках должно отражать, что сделано и полученные результаты, но не актуальность проблемы.
- Рисунки должны быть черно-белыми, цифры и текст на рисунках не менее 12-го кегля, в таблицах не должны дублироваться данные, приводимые в тексте статьи. Число таблиц не должно превышать пяти, таблицы должны содержать не более 5-6 столбцов.
- Цитирование литературных источников в статье и оформление списка литературы должно соответствовать требованиям редакции: список литературы составляется в порядке цитирования источников, но не по алфавиту.

Журнал «Практическая медицина» включен Президиумом ВАК в Перечень ведущих рецензируемых научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени доктора и кандидата наук.