УДК 616.2

ОСОБЕННОСТИ БИОХИМИЧЕСКОГО АНАЛИЗА КРОВИ ПРИ СИНДРОМЕ ОБСТРУКТИВНОГО АПНОЭ СНА У ПАЦИЕНТОВ С АГ И ИБС

Попков Дмитрий Александрович

студент

Калабунская Вероника Александровна

студент

Мельникова Екатерина Николаевна

студент

Белорусский государственный медицинский университет Минск (Беларусь)

author@apriori-journal.ru

Аннотация. Проведено исследование биохимического анализа крови у пациентов с ИБС и АГ, имеющие синдром обструктивного апноэ сна трех степеней тяжести. Выявлена достоверность повышения некоторых показателей крови при наличии умеренной и тяжелой формы синдрома обструктивного апноэ сна.

Ключевые слова: синдром обструктивного апноэ сна; биохимический анализ крови; ишемическая болезнь сердца; артериальная гипертензия.

FEATURES BIOCHEMICAL ANALYSIS OF BLOOD AT OBSTRUCTIVE SLEEP APNEA SYNDROME IN PATIENTS WITH HYPERTENSION AND CORONARY ARTERY DISEASE

Papkou Dzmitry Aleksandrovich

student

Kalabunskaya Veronika Aleksandrovna

student

Melnikova Ekaterina Nikolaevna

student

Belarusian State Medical University, Minsk (Belarus)

Abstract. A study of the biochemical analysis of blood in patients with coronary artery disease and hypertension with obstructive sleep apnea syndrome three degrees of severity. Showed a significant increase of some indicators of blood in the presence of moderate to severe obstructive sleep apnea syndrome.

Key words: obstructive sleep apnea syndrome; blood chemistry; coronary heart disease; hypertension.

Введение

Синдром обструктивного апноэ сна (COAC) – это состояние, характеризующееся наличием храпа, периодическим спадением верхних дыхательных путей на уровне глотки и прекращением легочной вентиляции при сохраняющихся дыхательных усилиях, снижением уровня кислорода

крови, грубой фрагментацией сна и избыточной дневной сонливостью [1]. Синдром обструктивного апноэ сна достаточно распространенная патология, которая встречается у 5-7 % всего населения старше 30 лет [2]. Нарушения дыхания во время сна при СОАС значительно влияют на качество и продолжительность жизни больных, имеющие заболевания сердечно-сосудистой системы, так как основной причиной, приводящей к повышенной смертности у пациентов с синдромом обструктивного апноэ сна, является раннее возникновение и быстрое прогрессирование сердечно-сосудистой патологии [3]. В последние годы многими учеными изучаются нарушения дыхания во сне, появляются большое количество данных о влиянии нарушения дыхания во сне с развитием сердечно-сосудистой патологии, в том числе фатальных осложнений [4].

Цель исследования — изучить особенности лабораторных анализов крови у пациентов с СОАС, страдающих ИБС и АГ.

Задачи: 1. Изучить лабораторные показатели крови в зависимости от степени СОАС. 2. Сравнить полученные данные в различных группах между собой. 3. Выявить особенности лабораторных показателей крови у пациентов различных форм СОАС.

Материал и методы

В исследование включено 135 пациентов, имеющие ишемическую болезнь сердца в сочетании с артериальной гипертензией. Пациенты были разделены на 4 группы в зависимости от наличия или отсутствия СОАС и степени тяжести СОАС при его наличии.

В группу № 1 вошло 45 пациентов, имеющие ИБС и АГ без СОАС, средний возраст которых составил 46 ± 1,8 лет (10 с АГ I степени, 19 с АГ II степени, 16 с АГ III степени).

В группу № 2 вошло 28 пациентов, имеющие ИБС, АГ и легкую форму СОАС, средний возраст которых составил 44 ± 2,4 лет (4 с АГ I степени, 11 с АГ II степени, 13 с АГ III степени).

В группу № 3 вошло 25 пациентов, имеющие ИБС, АГ и умеренную форму СОАС, средний возраст которых составил 47 ± 2,1 лет (5 с АГ I степени, 9 с АГ II степени, 11 с АГ III степени).

В группу № 4 вошло 37 пациентов, имеющие ИБС, АГ и тяжелую форму СОАС, средний возраст которых составил 49 ± 1,9 лет (7 с АГ I степени, 14 с АГ II степени, 16 с АГ III степени).

Диагноз СОАС основывался на результатах кардиореспираторного мониторинга (КРМ) с учетом индекса апноэ/гипопноэ: легкая форма характеризуется значением индекса апноэ/гипопноэ от 5 до 15, умеренная – от 15 до 30, тяжелая форма – от 30 и выше [5].

Всем пациентам был проведен биохимический анализ крови (БАК). В ходе исследования были оценены следующие лабораторные показатели крови: аспартатаминотрансфераза (АсАТ, ЕД/л), аланинаминотрансфераза (АлАТ, Ед/л), общий холестерин (ммоль/л), триглицериды (ммоль/л), липопротеины высокой плотности (ЛПВП, ммоль/л), липопротеины низкой плотности (ЛПНП, ммоль/л), глюкоза (ммоль/л), коэффициент атерогенности (КА), общий билирубин (мкмоль/л), общий белок (г/л), креатинфосфокиназа (КФК, Ед/л), лактатдегидрогеназа (ЛДГ, Ед/л), мочевина (ммоль/л), креатинин (мкмоль/л), натрий (ммоль/л), калий (ммоль/л), хлор (ммоль/л).

Исследование проводилось на базе РНПЦ «Кардиология» г. Минска. Статистическая обработка полученных данных осуществлялась с помощью программ Microsoft Excel 2010 и Statistica 10 с использованием методов непараметрического статистического анализа, результаты представлены как Ме (25 %; 75 %).

Достоверность межгрупповых различий медиан была оценена при помощи U-критерия Манна-Уитни. За достоверность различий изучаемых параметров принимали р < 0,05.

Результаты и обсуждение

В таблице 1 представлены результаты биохимического анализа крови в различных группах.

Таблица 1 **Биохимические показатели крови в сравниваемых группах**

Показатели	Группа № 1	Группа № 2	Группа № 3	Группа № 4
АсАТ (Ед/л)	29,6 (25,3; 36,8)	28,3 (24,7; 33,5)	25,8 (21,4; 28,9)	31,5 (26,7 36,1)
АлАТ (Ед/л)	34,5 (29,6; 39,4)	37,4 (32,7; 41,3)	35,9 (33,7; 39,4)	48,6 (38,7; 61,2)***
Холестерин (ммоль/л)	5,1 (4,3; 6,9)	5,5 (4,6; 7,3)	6,1 (5,2; 7,4)*	6,3 (5,4; 7,8)*
Григлицери- ды (ммоль/л)	1,7 (1,3; 1,9)	1,9 (1,5; 2,1)	2,2 (2; 2,5)*	2,8 (2,4; 3,1)*,**
ЛПВП (ммоль/л)	1,2 (0,9; 1,4)	1,3 (1,1;1,4)	1,3 (1,1; 1,5)	1,4 (1,1; 1,7)
ЛПНП (ммоль/л)	3 (2,7; 3,2)	3,1 (2,9; 3,2)	3,5 (3,2; 3,6)*,**	3,7 (3,4; 4,2)*,**
КА	2,9 (2,6; 3,2)	3 (2,7; 3,2)	3,2 (3; 3,5)	3,5 (3,2; 3,8)*,**
Билирубин (мкмоль/л)	14 (11,4; 16,3)	13,2 (11,2; 15,5)	11,6 (8,9; 13,7)	14,6 (10,8; 17,6)
Глюкоза (ммоль/л)	5,6 (5,1; 5,9)	5,6 (5,2; 6,1)	6,1 (5,6; 6,5)*,**	7,2 (6,3; 7,8)***
Белок (г/л)	70,1 (66,4; 74,3)	72,4 (65,8; 78,2)	70,3 (63,4; 78,3)	71,6 (65,1; 74,6)
КФК (Ед/л)	125,4 (108; 151)	121 (110,2; 137)	134,7 (112,3; 154,6)	128,1 (106,7; 152,3)
ЛДГ (Ед/л)	158,3 (146,7; 174,1)	167,4 (153,5; 184,3)	174,2 (161,3; 194,7)	181,4 (167,7; 204,3)*,**
Мочевина (ммоль/л)	5,3 (4,7; 5,6)	5,5 (4,8; 5,8)	6,2 (5,4; 7,1)*,**	6,5 (5,8; 7,4)*,**
Креатинин (мкмоль/л)	85,6 (78,6; 90,1)	90,2 (83,6; 94,7)	93,4 (85,7; 97,1)*	95,4 (87,5; 98,6)*
Натрий	142,1 (138,6;	141,7	140,7	142,1
(ммоль/л)	146,5)	(137,9; 144,6)	(136,2; 145,9)	(137,6; 145,1)
Калий (ммоль/л)	4,2 (3,9; 4,4)	4,1 (3,8; 4,3)	4,4 (3,9; 4,8)	4,3 (4; 4,6)
Хлор	100,9	101,2	101,6	100,6
(ммоль/л)	(96,7; 104,3)	(95,9; 105,1)	(97,4; 103,8)	(96,1; 104,7)

Примечание: * — P < 0,05 по сравнению с группой № 1, ** — P < 0,05 по сравнению с группой № 2, *** — P < 0,05 по сравнению с группами № 1, № 2 и № 3.

В ходе исследования установлено, что АлАТ в группе №4 достоверно выше, чем в группах № 1, № 2 и № 3 (48,6 (38,7; 61,2) Ед/л против 34,5 (29,6; 39,4) Ед/л, 37,4 (32,7; 41,3) Ед/л и 35,9 (33,7; 39,4) Ед/л соответственно, Р < 0,05). Общий холестерин в группах № 3 и № 4 достоверно выше, чем в группе № 1 (6,1 (5,2; 7,4) ммоль/л и 6,3 (5,4; 7,8) ммоль/л против 5,1 (4,3; 6,9) ммоль/л соответственно, P < 0,05). Триглицериды в группах № 3 и № 4 достоверно выше, чем в группе №1 (2,2 (2; 2,5) ммоль/л и 2,8 (2,4; 3,1) ммоль/л против 1,7 (1,3; 1,9) ммоль/л соответственно, Р<0,05). Липопротеины низкой плотности в группах № 3 и № 4 достоверно выше, чем в группах № 1 и № 2 (3,5 (3,2; 3,6) ммоль/л и 3,7 (3,4;4,2) ммоль/л против 3 (2,7;3,2) ммоль/л и 3,1 (2,9;3,2) ммоль/л соответственно, Р < 0,05). Коэффициент атерогенности в группе № 4 достоверно выше, чем в группе № 1 и № 2 (3,5 (3,2; 3,8) против 2,9 (2,6; 3,2) и 3 (2,7; 3,2) соответственно, Р < 0,05). Глюкоза в группах № 3 и № 4 достоверно выше, чем в группах № 1 и № 2 (6,1 (5,6; 6,5) ммоль/л и 7,2 (6,3;7,8) ммоль/л против 5,6 (5,1;5,9) ммоль/л и 5,6 (5,2;6,1) ммоль/л соответственно, Р < 0,05). Уровень лактатдегидрогеназы в группе №4 достоверно выше, чем в группах № 1 и № 2 (181,4 (167,7; 204,3) Ед/л против 158,3 (146,7; 174,1) Ед/л и 167,4 (153,5; 184,3) Ед/л соответственно, Р < 0,05). Уровень мочевины в группах № 3 и № 4 достоверно выше, чем в группах № 1 и № 2 (6,2 (5,4; 7,1) ммоль/л и 6,5 (5,8; 7,4) ммоль/л против 5,3 (4,7; 5,6) ммоль/л и 5,5 (4,8; 5,8) ммоль/л соответственно, P < 0,05). Уровень креатинина в группах № 3 и № 4 достоверно выше, чем в группе № 1 (93,4 (85,7; 97,1) и 95,4 (87,5; 98,6) против 85,6 (78,6; 90,1) соответственно, Р < 0,05). Что касается других показателей: электролиты, уровень белка, билирубина и ряда ферментов, то достоверных различий межгрупповых показателей не наблюдалось. Из полученных результатом можно сказать, что при наличии умеренной и тяжелой форм СОАС наблюдается увеличение биохимических показателей крови.

Выводы

- 1. При наличии умеренной и тяжелой формы COAC возрастают холестерин, триглицериды, липопротеины низкой плотности, глюкоза, мочевина и креатинин по сравнению с легкой формай COAC и без COAC у пациентов, страдающий ИБС и АГ.
- 2. Наличие легкой формы COAC не влияет на биохимические показатели крови у пациентов, страдающий ИБС и АГ.
- 3. Биохимические показатели крови у пациентов, стрдающих ИБС и АГ с умеренной и тяжелой формами СОАС достоверно не различимы, умеренная и тяжелая формы СОАС практически одинаково влияют на биохимические показатели крови.

Список используемых источников

- 1. Бузунов Р.В., Легейда И.В., Царева Е.В. Храп и синдром обструктивного апноэ сна. М., 2012. С. 7.
- Marin J.M., Gascon J.M., Carrizo S. et al. Prevalence of sleep apnoea syndrome in the Spanish adult population // Int. J. Epidemiol. 1997. V. 26. P. 381-386.
- 3. Пальман А.Д. Синдром обструктивного апноэ во сне в терапевтической практике / под ред. А.И. Синопальникова. М., 2007. С. 15-16.
- 4. Ротарь О.П., Свиряев Ю.В., Сухина М.В. Показатели суточного мониторирования артериального давления у больных с синдромом обструктивного апноэ/гипопноэ во сне // Бюллетень научно-исследовательского института кардиологии им. В.А. Алмазова. 2004. Т. 2. № 1. С. 176.
- 5. Punjabi N.M., Newman A., Young T. et al. Sleep disordered breathing and cardiovascular disease: an outcome-based depnition of hypopneas // Am. J. Respir. Crit. Care. Med. 2008. V. 177 (10). P. 1150-1155.