время и клиницстами, и патоморфологами снижение микроциркуляции признано "критическим параметром" [13, 17]. Усилению гипоксических влияний способствует железодефицитное состояние, выявленное у детей основной группы. В нашем исследовании обнаружено достоверное снижение уровней железа и гемоглобина в крови у детей с РГН (p < 0.001). Это связано с тем, что железо - компонент цитохромов, поэтому железодефицитное состояние приводит к поражению наиболее чувствительной к кислородному голоданию ткани эпителия. Дефицит железа может приводить к нарушению синтеза многих белков, в том числе коллагена, из-за дефицита железозависимых рецепторов и ферментов, в частности, оксидаз (пролил- и лизилоксидаз), участвующих в гидроксилировании коллагена в поперечных сшивках коллагеновых волокон [3].

Таким образом, нарушение вегетативного тонуса и катаболический обмен веществ приводят к выраженным микроциркуляторным нарушениям, что является фактором риска формирования патологического рубца и негативного косметического результата оперативной коррекции порока.

ЛИТЕРАТУРА

- 1. *Бернадский Ю. И.* Травматология и восстановительная хирургия черепно-лицевой области. М., 1999.
- 2. *Болховитинова Л. А., Павлова М. Н.* Келоидные рубцы. М., 1977

- 3. *Гусякова О. А.* Характеристика молекулярных признаков, ассоциированных с групповой принадлежностью крови в показателях метаболизма и клеточного состава крови в норме и патологии: Автореф. дис. ... д-ра мед. наук. Самара, 2009.
- 4. Детская вегетология / Под ред. Р. Р. Шиляева, Е. В. Неудахина. М., 2008.
- 5. Долгушин И. И., Эбер Л. Я., Лифшиц Р. И. Иммунология травмы. Свердловск, 1989.
- 6. Зайчик А. Ш., Чурилов А. П. Патофизиология. СПб., 2002.
- 7. *Исаков Л. О.* Комплексная реабилитация детей в республике Саха (Якутия): Автореф. дис. ... канд. мед. наук. Иркутск, 2009.
- Козин И. А. Эстетическая хирургия врожденных расщелин лица. – М., 1996.
- 9. Колесов А. А. Стоматология детского возраста. М., 1978.
- Крупаткин А. И. Клиническая нейроантиофизиология конечностей (периваскулярная иннервация и нервная трофика). – М., 2003.
- 11. Озерская О. С. Патогенетическое обоснование новых методов терапии рубцов: Автореф. дис. ... д-ра мед. наук. СПб., 2002.
- Осокина Г. Г. // Современные методы диагностики в педиатрии: Сб. науч. тр. – М., 1985. – С. 94–98.
- Пальцев М. А., Иванов А. А. Межклеточные взаимодействия. М. 2003
- 14. Сутулов В. В. Оказание специализированной помощи детям с врожденной расщелиной губы и неба в современных условиях развития здравоохранения: Автореф. дис. ... канд. мед. наук. – Тверь, 2006.
- 15. Функциональная оценка периваскулярной иннервации конечностей с помощью лазерной допплеровской флоуметрии: Пособие для врачей / Крупаткин А. И., Сидоров В. В., Меркулов М. В. и др. М., 2004.
- 16. *Hopf H*. et al. // Arch. Surg. 1994. Vol. 129. P. 128–132.
- Tonnesen M. G., Feng X., Clark R. A. // J. Invest. Dermatol. Symp. Proc. – 2000. – Vol. 5,N 1. – P. 40–46.

Поступила 11.11.11

ОБЗОРЫ

© КОЛЛЕКТИВ АВТОРОВ, 2012

УДК 616.62-007.253-031:611.617]-089.819

С. Л. Коварский, О. С. Шмыров, А. Н. Текотов

ОСЛОЖНЕНИЯ ЭНДОСКОПИЧЕСКОЙ КОРРЕКЦИИ ПУЗЫРНО-МОЧЕТОЧНИКОВОГО РЕФЛЮКСА

Кафедра детской хирургии (зав. А. В. Гераськин) Российского государственного медицинского университета им. Н. И. Пирогова; детская городская клиническая больница № 13 им. Н. Ф. Филатова (гл. врач К. В. Константинов), Москва

Олег Сергеевич Шмыров, канд. мед. наук, вед. науч. сотр. НИИ критических состояний детской хирургии, e-mail shatun76@mail.ru

Пузырно-мочеточниковый рефлюкс (ПМР) представляет собой ретроградный ток мочи из мочевого пузыря в мочеточник и чашечно-лоханочную систему вследствие несостоятельности замыкательного механизма уретеровезикального соустья. ПМР вызывает нарушение оттока мочи из верхних мочевых путей, что создает благоприятные условия для развития воспалительного процесса, рубцевания почечной паренхимы с развитием рефлюкс-нефропатии, артериальной гипертензии и хронической почечной недостаточности [2]. Причины, вызывающие нарушение функции везикоуретерального сегмента, многообразны: пороки развития мышечной стенки мочеточника, инфравезикальной области и спинномозгового канала, короткий интрамуральный отдел, а

также воспалительные заболевания нижних мочевых путей, травмы пузырно-мочеточникового сегмента [5]. Для купирования ПМР применяют консервативное, эндоскопическое и оперативное лечение.

Эндоскопическая коррекция ПМР за почти 30-летнюю историю своего существования заняла достойное место в лечении данной патологии. Как малоинвазивный и эффективный метод ее предпочитают и врачи, и пациенты. Так, согласно опросу, проведенному итальянскими урологами, 80% родителей выбирают эндоскопическое лечение в качестве альтернативы открытым операциям и длительной медикаментозной терапии [4, 13]. Способ лечения заключается в уменьшении диаметра устья за счет имплантации препарата, а также в небольшом

увеличении длины интрамурального отдела мочеточника и фиксации пузырно-мочеточникового сегмента. При этом вводимое вещество постепенно замещается аутофибробластами и новыми коллагеновыми отложениями [10, 13, 14]. В качестве фиксирующих веществ, вводимых под устье мочеточника, применяют различные синтетические материалы - тефлоновую пасту [6]; R. Kumar, P. Puri, 1998, 2000; K. O. Viddal et al., 2001), силикон (Dodat H., 1994; Herz D. et al., 2001; Bartoli F. и соавт., 2006), полиакриламидные водосодержащие гели "Интерфалл" (Барухович В. Я. и др., 1999; Соловьев А. Е., 2001), "Формакрил" (Островский Н. В. и др., 2000), "DAM+" (Осипов И. Б., Лбедев Д. А. и др., 2002, 2005, 2007), гидроксиапатит кальция (Mora Durban M. J. и соавт., 2006; Eryildirum B. и соавт., 2007); биологические препараты – денатурированный альбумин (Olof Alfthan, 1990), одногруппную плазму (Кольбе О. Б. и др., 2002; Долгов Б. В. и др., 2002), аутокровь (Ахунзянов А. А. и др., 2004), коллаген (Ахунзянов А. А., Байбиков Р. С. и др., 2002, 2004; [1]; Коварский С. Л., Меновщикова Л. Б. и др., 2002; Румянцева Г. Н. и др., 2002; Tsuboi N., 2000), препараты гиалуроновой кислоты (Сароzza N. и соавт., 1997; Lackgren G. и соавт., 2001; Benoit R. M. et al., 2006) [4].

Приоритет в медицинском применении тефлоновой пасты принадлежит отоларингологу Arnold (1962), использовавшему ее с целью коррекции голосовой щели. Внедрение в урологическую практику тефлона состоялось в 1974 г., когда V. Politano выполнил парауретральную инъекцию по поводу недержания мочи.

Впервые о малоинвазивном эндоскопическом способе коррекции ПМР заявил чешский ученый Е. Matouschek. В 1981 г. он с положительным результатом выполнил инсуффляцию тефлоновой пасты ребенку 8 лет в область устья рефлюксирующего мочеточника [22]. Впоследствии В. О'. Donnel совместно с Р. Ригі (1984) описали методику эндоскопического лечения ПМР [27]. За 30 лет опробованы многочисленные имплантируемые материалы начиная с тефлона и заканчивая культурами аутогенных клеток [1–6, 8, 22, 23, 26–28].

Наиболее полная классификация инъецируемых материалов выглядит следующим образом:

- ауто- и аллогенные: кровь, плазма, адипоциты, хондроциты, фибробласты, клетки детрузора, коллаген человека;
- ксеногенные и синтетические: тефлон, силикон, декстраномер/гиалуроновая кислота, гидроксиапатит кальция, биостекловолокно, "Формакрил", "Интерфалл", "DAM+", поливинилспиртовая пена, гидроксиэтилметакрилат, бычий коллаген, макропластик, дюрасферы (Durasphere B.), Vantrix.

Первый опыт применения антирефлюксных имплантатов настораживал специалистов в связи с возможностью развития нежелательных побочных эффектов: возникновения в месте инъекции некроза, малигнизации, миграции материала с формированием гранулем в регионарных лимфатических узлах и/ или паренхиматозных органах [6, 20, 24]. Современными экспериментальными и клиническими работами доказана инертность, гипоаллергенность и безопасность используемых в настоящее время биоматериалов [7, 22, 25]. Положительные результаты эндоскопического лечения ПМР, по данным недавних исследований (Chertin, 2003; Kirsch, 2004), достигают 70–93%, однако данная методика не лишена осложнений.

Результаты обследований, а также их динамика в отдаленном периоде позволили сформировать группу осложнений, характерных для эндоскопического лечения ПМР.

Осложнения

Кровотечение из места введения уроимплантата встречается редко, но если учесть инвазивность процедуры, оно характерно для этого метода. Способы устранения данного вида осложнений просты и не вызывают затруднений при выполнении процедуры эндоскопической коррекции рефлюкса: кровотечение останавливают, прижимая место инъекции дисталь-

ным концом тубуса цистоскопа в течение 1 мин. В послеоперационном периоде гематурия требует дренирования мочевого пузыря с помощью уретрального катетера на срок от 1 до 3 сут, а при необходимости назначение гемостатических средств.

Боль в месте инъекции носит временный характер и лишь в редких случаях требует назначения ненаркотических анальгетиков.

Обострение инфекции мочевых путей характерно для ПМР высокой степени. Поскольку при выполнении эндоскопической коррекции уменьшается размер устья, отток мочи из расширенного мочеточника и лоханки затруднен, что в свою очередь ведет к некоторому застою мочи в верхних мочевых путях, предрасполагающему к обострению инфекции. Инфекция мочевых путей ликвидируется по общим правилам — увеличением водной нагрузки (в зависимости от состояния пациента это может быть пероральная или инфузионная нагрузка), антибактериальной терапией с дренированием мочевого пузыря уретральным катетером.

Рецибив рефлюкса как осложнение метода связано в большей степени со свойствами вещества, в меньшей с техникой проведения процедуры и рассматривается при возобновлении заболевания в отдаленные сроки после первичноположительных результатов лечения. По данным разных авторов, как отечественных, так и зарубежных, на долю данного вида осложнений приходится от 11,5 до 82%. Наибольшая частота рецидивов наблюдается после использования коллагена, аутокрови, свежезамороженной плазмы. Эти препараты, являясь биодеградируемыми веществами, обладают меньшей эффективностью, особенно в отдаленные сроки [16, 19, 31]. Так, возобновление рефлюкса через 1 год после эндоколлагенопластики отмечают в 17,1% случаев [29].

А. Наferkamp и соавт. [16] только в 9% случаев наблюдали положительные результаты эндоскопического лечения коллагеном первичного ПМР в отдаленные сроки (через 3 года после введения). В связи с частыми рецидивами рефлюкса коллаген приходится вводить 2-, 3- и даже 4-кратно. Анализ литературы позволяет сформулировать 2 основные причины рецидивирования рефлюкса.

Миграция вещества из места инъекции в другие органы подтверждается как клиническими, так и экспериментальными исследованиями.

В экспериментах на лабораторных животных – обезьянах (Malizia A. A., [21]), собаках [7], кроликах (Vandenbossche M., Delhove О. и соавт., 1993) – была обнаружена миграция частиц тефлона в различные органы, в том числе в легкие, почки, селезенку и головной мозг.

В 1984 г. опубликованы данные о случаях миграции тефлона после его парауретрального введения в эксперименте. R. Borgatti и соавт. в 196 г. опубликовали клиническое наблюдение ишемического поражения головного мозга после эндоскопического введения тефлона под устье рефлюксирующего мочеточника у девочки 6 лет через 1 год после введения тефлона [11].

Испанский исследователь А. Serrano-Durba и соавт. в 2006 г. [30] описали 5 случаев миграции другого уроимплантата — макропластика, что явилось причиной острой задержки мочи и эпидидимита.

Два случая аденопатии и гранулемы вследствие миграфии тефлона в периферические лимфоузлы опубликованы F. Aragona и соавт. в 1997 г. [9].

По данным С. Bertschy и соавт., опубликованным в 2001 г., до 52% рецидивов рефлюкса после использования тефлона и макропластика обусловлены полной или частичной миграцией препарата [10].

Уменьшение объема введенного тефлона в 57% случаев отмечено исследователями Варшавской медицинской академии Е. Bres, A. Sopotnicka, B. Dybowski [12].

Органы, в которых было обнаружено мигрировавшее вещество, – легкие, лимфатические узлы, селезенка, почки, головной мозг, уретра, мочевой пузырь. Хотя количество наблюдений данного осложнения невелико, тем не менее пре-

параты тефлона не рекомендованы к использованию Управлением США по санитарному надзору за качеством пищевых продуктов и медикаментов, так как наряду с указанным осложнением тефлона доказана его канцерогенность.

Миграция вводимого имплантата, по-видимому, связана как со свойствами (размером частиц) и объемом вводимого вещества, так и непосредственно с техникой выполнения процедуры. Миграция тефлона происходит за счет как фагоцитоза, так и прямой эмболии в венозное русло. Экспериментально установлено, что оптимальная глубина вкола иглы при введении имплантата в послизистый слой мочевого пузыря составляет 3–5 мм от устья пораженного мочеточника. При глубине вкола менее 3 мм имплантат вытекает из места вкола в полость мочевого пузыря (99% случаев); при глубине свыше 5 мм увеличивается (на 50–60%) вероятность имплантации в детрузор, что исключает возможность правильного формирования болюса.

Биодеградация введенного препарата. Этот процесс свойствен препаратам биологического происхождения. Большинство специалистов связывают поддержание введенного объема препаратов с проникновением в зону манипуляции фибробластов и продукцией последними аутологичного коллагена. Однако параллельно с процессами синтеза коллагена имеет место процесс активации ферментативного расщепления введенного вещества иммунокомпетентными клетками, что объясняет возможность уменьшения эффективного целевого объема с течением времени.

А. Наferkamp и соавт. [16] опубликовали результаты лечения ПМР у детей после однократного введения бычьего коллагена. Первоначально высокий показатель эффективности – 95% снизился до 9% через 37 мес после манипуляции. Связанный коллаген обеспечивает большую стабильность результатов. Снижение его эффективности с течением времени отмечено у 11,5–30% пациентов.

Эффективность введения аутокрови и аутожира не превышает 8%. Рецидив рефлюкса вследствие снижения введенного объема описан после применения препарата Дефлюкс, его частота достигает 13,5%.

В 2006 г. J. Elmore и соавт. [15] из Медицинского университета Атланты, США, опубликовали результаты наблюдений 30 детей с ПМР, которым была выполнена реимплантация мочеточника после неудачного эндоскопического введения декстраномер/гиалуроновой кислоты. У 15 детей в области устья мочеточника добавочный объем не выявлен, у остальных 15 отмечена его миграция в пределах окружающих тканей.

Рецидив рефлюкса требует устранения, в зависимости от степени рефлюкса и применяемого вещества используют либо повторную эндоскопическую коррекцию, либо традиционные оперативные вмешательства.

Обструкция уретеровезикального сегмента после введения эндоскопических уроимплантатов. По данным публикации А. Zaccara и соавт. [33], частота развития этого осложнения достигает 1%. Около половины пациентов с данным осложнением потребовали хирургических манипуляций по стентированию или неоимплантации мочеточника. Авторы не отмечают явную связь развития уретеровезикальной обструкции с количеством введенного препарата. Возможно, это связано с местными реакциями организма на введение инородных веществ, а также с физическими свойствами самого вещества [18, 32]. Имеются литературные данные об использовании при данном осложнении стентирования мочеточника на срок от 3 до 6 мес.

Для всех препаратов небиологического происхождения, а также биологических неаутологичных препаратов описаны местиные реакции воспалительного характера, сопровождающиеся инфильтрацией иммунокомпетентных клеток, активизацией ферментативных процессов. Описаны реакции гранулематозного воспаления, гигантоклеточной инфильтрации с кальцификацией и инкапсуляцией препаратов, с признаками стойкого фиброза. Данные получены в процессе контрольных эндоскопических исследований или оперативных вмешательств по поводу рецидива заболевания.

В 1997 г. F. Aragona описал случай гигантской парауре-

тральной гранулемы после введения тефлона [9].

В 2007 г. ученые из университета штата Айова, США, представили наблюдение кальцификата в области устья мочеточника после введения связанного коллагена, который проявлялся периодическими болями и гематурией [25].

Иммунные реакции. Поскольку коллаген имеет животное происхождение, возможно развитие иммунных реакций. К. Іпоце и соавт. [17] наблюдали у части больных повышение иммуноглобулинов класса G после инъекции бычьего коллагена независимо от объема и кратности введений. Образование антител к бычьему коллагену после эндоскопической коррекции ПМР отмечено у 22–30% детей в сроки от 6 до 24 мес. Эти антитела не вызывают перекрестные реакции к человеческому коллагену типов I и III, и у пациентов отсутствуют симптомы аутоиммунных заболеваний [17]. Объем введенного коллагена также не влияет на аутоиммунный статус. Тем не менее перед инъекцией следует проводить кожный тест на чувствительность и предупреждать родителей о продукции организмом ребенка антител.

Таким образом, несмотря на малоинвазивность метода, он вызывает осложнения, поэтому в настоящее время продолжаются поиски такого эндоскопического имплантата, который был бы лишен всех вышеуказанных недостатков и был бы оптимален в отношении цена—качество. Многие ученые связывают свои надежды в этом вопросе с уроимплантатами на основе собственных клеток человека.

ЛИТЕРАТУРА

- Бабанин И. Л., Казанская И. В., Коноплев В. Д. // Материалы X Российского съезда урологов. – М., 2002. – С. 698–699.
- 2. *Исаков Ю. Ф., Дронов А. Ф.* Детская хирургия. Национальное руководство. М., 2009. С. 599–605.
- 3. *Киреева Н. Б., Хафизова Л. А., Паршиков В. В.* и др. // Нижегород. мед. журн. 2003. № 3–4. С. 8–12.
- Киреева Н. Б. Клинико-патогенетическое обоснование эндоскопического и оперативного методов лечения пузырномочеточникового рефлюкса у детей: Автореф. дис. ... д-ра мед. наук. – СПб., 2008.
- Лопаткин Н. А., Пугачев А. Г. Пузырно-мочеточниковый рефлюкс. – М., 1990.
- 6. Неменова А. А., Чепурнов А. Г. // Урол. и нефрол. 1993. № 2. С. 7–10.
- 7. Aaronson I. A., Rames R. A., Greene W. B. et al. // Eur. Urol. 1993. Vol. 23. P. 394–399.
- 8. Alkan M., Talim B., Ciftci A. O. et al. //BMC Urology. 2006. Vol. 6. P 3
- Aragona F., D'Urso L., Scremin E. et al. // J. Urol. (Baltimore). 1997. – Vol. 158, N 4. – P. 1539–1542.
- Bertschy C., Aubert D., Piolat C., Billerey C. // Prog. Urol. 2001. Feb. – P. 113–117.
- Borgatti R., Tettamanti A., Piccinelli P. // Pediatrics. 1996. Vol. 98.
 P. 290–291.
- 12. Bres E., Sopotnicka A., Dybowski B. et al.//Wiad. Lek. 1998. Vol. 51. P. 349–353.
- 13. *Capozza N., Lais A., Matarazzo E.* et al. // Br. J. Urol. Int. 2003. Vol. 92. P. 285–288.
- Cozzolino D. J. et al. // Neurourol. Urodyn. 1999. Vol. 18, N 5. P. 487–495.
- Elmore J. M., Kirsch A. J., Perez-Brayfield M. R. et al. // J. Urol. (Baltimore). – 2006. – Vol. 176, N 3. – P. 1158–1160.
- Haferkamp A., Contractor H., Mobring K. et al. // Urology. 2000.
 Vol. 55, N 5. P. 759–763.
 Inoue K. et al. // J. Urol. (Baltimore). 2001. Vol. 165, N 2. –
- P. 555–558.

 18. *Kirlum H. J., Stehr M., Dietz H. G.* // Eur. J. Pediatr. Surg. 2006. –
- Vol. 16, N 2. P. 133–134. 19. *Lackgren G., Wahlin N., Stenberg A.* // Acta Paediatr. – 1999. –
- Vol. 88 (suppl. 43). P. 62–71. 20. *Larsson E., Stenberg L.* et al. // Scand. J. Urol. Nephrol. – 1999. –
- Vol. 33, N 6. P. 355–361. 21. *Malizia A. A., Reiman H. M., Meyers R. P.* et al. // J. A. M. A. – 1984. – Vol. 251. – P. 3277–3281.
- 22. *Matouschek E. //* Urologe A. 1981. Vol. 20. P. 263–264.
- 23. McPherson J. M., Wallace D. G., Piez K. A. // J. Dermatol. Surg.

- Oncol. 1988. Vol. 14, N 1. P. 13.
- 24. Mittleman R. E., Marraccini J. V. // Arch. Pathol. Lab. Med. 1983. Vol. 107. - P. 611-612
- 25. Nepple K. G., Knudson M. J., Cooper C. S. et al. // Urology. 2007. Vol. 69, N 5. – P. 982.
- 26. Paradysz A., Fryczkowski M., Krauze-Balwinska Z., Gajewski D. // Wiad. Lek. – 2002. – Vol. 55, N 7–8. – P. 404–410. 27. *Puri P., O'Donnell B. //* Br. Med. J. – 1984. – Vol. 289. – P. 5–7.
- 28. Puri P., Chertin B., Dass L. // J. Urol. (Baltimore). 2003. Vol. 170. - P. 1541–1544.
- 29. Riccipetitoni G. et al. // ESPU Meetings Secretariat. Rome, 1997.
- 30. Serrano-Durba A., Bonillo-Garcha M. A., Moragues-Estornell F. // Services of Pediatric Urology and Radiodiagnostics. - Valensia, 2006. - P. 170-174.
- Trsinar B., Cotic D., Oblak C. // Eur. Urol. 1999. Vol. 36, N 6. P. 635-639
- 32. *Vandersteen D. R., Routh J. C., Kirsch A. J.* et al. // J. Urol. (Baltimore). 2006. Vol. 176, N 4. P. 1593–1595.
- Zaccara A., Gastagnetti M., Beniamin F., Rigamonti W. // Urology. --2007. - Vol. 70, N 4. - P. 811.

Поступила 02.03.11

© КОЛЛЕКТИВ АВТОРОВ, 2012

УДК 616.727.3-001-053.2-089.12

Я. Н. Прощенко, Н. А. Поздеева, И. Е. Никитюк

ХИРУРГИЧЕСКИЕ ДОСТУПЫ ПРИ ПОВРЕЖДЕНИЯХ ЛОКТЕВОГО СУСТАВА У ДЕТЕИ

ФГУ Научно-исследовательский детский ортопедический институт им. Г. И. Турнера Минздравсоцразвития России, г. Пушкин

Нина Анатольевна Поздеева, канд. мед. наук, зав. отд. ревматоидного артрита и последствий травм, Pozdeeva.nina@mail.com

Лечение повреждений локтевого сустава до настоящего времени остается одной из самых трудных и до конца не решенных проблем современной травматологии и ортопедии. Это связано со сложностью его анатомии и биомеханики, склонностью к параартикулярной оссификации и быстрому развитию посттравматических контрактур [24]. Посттравматические осложнения при повреждении локтевого сустава занимают 1-е место по частоте и в 29,9% случаев приводят к стойкой инвалидизации пациентов [1].

Прошло более 100 лет с момента первых сообщений Lane (1905) и Ranzi (1926), которые в связи с неудовлетворительными результатами закрытой репозиции при травмах костей локтевого сустава предлагали применять оперативный метод с целью устранения смещения отломков и улучшения результатов лечения [3, 22]. Однако хирургический метод был дискредитирован, так как в ряде случаев "предпринимались вмешательства без учета анатомо-физиологических особен-

ностей растущего организма" [3]. Данные литературы [35, 37, 38] свидетельствуют о необходимости точной репозиции и стабильной фиксации отломков, что может быть осуществлено только открытым методом [12]. Х. З. Гафаров и соавт. [7], признавая эффективность и целесообразность оперативного метода лечения, делают это с определенной долей осторожности: репозиция проводится через "щадящие" доступы – иными словами, мини-доступы. Однако при использовании оперативных доступов малых размеров повреждаются края операционной раны при растягивании их крючками, что усугубляет травму оперируемой области [25]. До настоящего времени открытый метод лечения детей с повреждениями области локтевого сустава используется недостаточно широко.

В литературе описано около 30 различных оперативных доступов к области локтевого сустава [21]. По мнению Д. Е. Горшунова [8], ошибки в выборе доступа ограничивают возможность полноценной ревизии сустава и периартикулярных тканей, затрудняют или исключают выполнение необходимых манипуляций и оперативных приемов, способствуют возникновению интра- и послеоперационных осложнений.

В настоящее время широкое клиническое распространение получил задний доступ к локтевому суставу [5, 30, 41]. Доступ с остеотомией локтевого отростка впервые описан MacAusland в 1915 г. [11]. Он обеспечивает хороший обзор дистального отдела плечевой кости и локтевого сустава. Остеотомия локтевого отростка может осуществляться внеартикулярно по Miller [19] или интраартикулярно по Alglave, Cassebaum [6], однако эти приемы нарушают нормальную анатомию локтевого сустава и вызывают повреждение проксимальной зоны роста локтевой кости у детей [30]. Выполнение заднего доступа с остеотомией локтевого отростка требует последующего точного сопоставления фрагментов локтевого отростка и проведения остеосинтеза [18]. При этом затруднительно выполнение ранних восстановительных движений в суставе после операции из-за опасности смещения локтевого отростка.

Оперативные доступы у детей с отсечением надмыщелков, такие как чрезнадмыщелковый наружный доступ по Гурьеву-Шестерне, внутренний чрезнадмыщелковый доступ [23], также наносят дополнительную травму в зоне роста апофизов и вызывают нарушение роста плечевой кости.

Для визуализации локтевого сустава предложено множество доступов через трехглавую мышцу плеча. В 1932 г. Сатрbell предложил доступ с расщеплением трицепса [11], а G. Van Golden (1940) предложил выкраивать языкообразный лоскут из апоневроза трехглавой мышцы плеча [31, 41], R. Bryan, В. Моггеу (1982) для осуществления доступа отделяли сухожилие от локтевого отростка с отведением его в необходимую сторону [31]. Однако, по мнению многих авторов, при выполнении заднего доступа независимо от способа рассечения трехглавой мышцы плеча происходит ее относительное удлинение, а впоследствии рубцовый процесс по месту рассечения способствует усугублению контрактур в локтевом суставе [23, 31].

В. Д. Белоусов и А. М. Цукан, учитывая все недостатки других доступов, предложили использовать у детей для репозиции дистального отдела плечевой кости так называемый дугообразный доступ А. М. Цукана [26], и Z-образное рассечение трицепса по В. Д. Белоусову [5]. Прием Z-образного рассечения сухожилия трехглавой мышцы плеча, предложенный им, также приводит к ее относительному удлинению.

Кроме того, рубцовый процесс по месту рассечения способствует усугублению контрактуры локтевого сустава, что обусловлено уменьшением сократительной способности трехглавой мышцы плеча и формированием дополнительной точки фиксации к плечевой кости в месте перелома за счет рубцовой спайки. При этом ограничивается возможность в проведении ранней разработки сустава после открытой репозиции из-за опасности возникновения несостоятельности мышечных швов [21].

Известен также задний доступ при чрезмыщелковых переломах у детей, предложенный Г. Г. Петровым [21, 22]. Автор предлагает рассекать апоневроз трехглавой мышцы плеча скальпелем продольно, строго по средней линии, не доходя 1 см до вершины локтевого отростка локтевой кости. Трехглавую мышцу плеча расслаивают продольно по ходу мышечных волокон до надкостницы плечевой кости. Из дистального угла разреза продолжают рассечение апоневроза трицепса в двух