УДК 616.727.2-001.5-007.17-037

ГЮЛЬНАЗАРОВА С.В., ЗУБАРЕВА Т.В., МАМАЕВ В.И. ФГБУ «Уральский НИИТО им. В.Д. Чаклина», г. Екатеринбург, Россия

О НЕСТАБИЛЬНОСТИ ЭНДОПРОТЕЗОВ ПЛЕЧЕВОГО СУСТАВА У ПАЦИЕНТОВ С ЗАСТАРЕЛОЙ ТРАВМОЙ, ОСЛОЖНЕННОЙ ПОВРЕЖДЕНИЕМ НЕРВНЫХ СТВОЛОВ

Резюме. Представлен способ прогнозирования нестабильности гемипротезов плечевого сустава у больных с несращениями, неправильно сросшимися переломами и переломовывихами проксимального отдела плечевой кости. Способ достаточно прост, основан на данных электронейромиографии, позволяет на дооперационном этапе предсказать нестабильность плечевого гемипротеза.

Ключевые слова: гемипротез, плечевой сустав, нестабильность, застарелый перелом, электронейромиография.

Эндопротезирование плечевого сустава (ПС) активно применяется в лечении его заболеваний и повреждений. При переломах, как правило, используется вариант гемиартропластики ПС. Однако у пациентов с застарелой травмой (несросшимися, неправильно сросшимися переломами, ложными суставами, переломовывихами) проксимального отдела плечевой кости (ПОПК) результаты протезирования значительно хуже, чем при свежих переломах данной области [1-3, 6]. В отдаленный период после травмы это связано с тяжелыми нарушениями анатомии ПС, обширным рубцеванием окружающих его тканей, несостоятельностью вращательной манжеты плеча, выраженной мышечной дисфункцией [1, 3, 5, 7, 9]. Из осложнений гемиартропластики ПС в отдаленные после операции сроки у части больных отмечают формирование нестабильности гемипротеза [4, 8, 10]. Так, у пациентов с остеоартрозами миграцию головки протеза через 2 года и более после операции выявили I.A. Trail, D. Nuttall [10]. Они сообщили о верхней миграции головки протеза у 28 % оперированных больных и медиальном смещении ее у 16 %. По мнению L. Favard с соавторами [4], гемипротезам ПС независимо от их конструкции в принципе присуща миграция головки в передневерхнем направлении. В доступной литературе авторам не удалось обнаружить какие-либо показатели, объективно характеризующие состояние поврежденной конечности, которые можно было бы использовать для дооперационного протезирования нестабильности однополюсного протеза ПС.

Цель исследования — разработать прогностический критерий возможной нестабильности гемипротеза ПС у пациентов с застарелыми переломами, переломовывихами, ложными суставами ПОПК.

Материалы и методы

Проведено обследование и хирургическое лечение 22 пациентов с застарелыми переломами и переломовывихами ПОПК, которым была выполнена гемиартропластика ПС протезом Articula (Mathys LTD Bettlach, Switzerland). Все пациенты до операции были обследованы комплексно с помощью клинических и рентгенологических методов, мультиспиральной компьютерной томографии, в ряде случаев выполняли магнитно-резонансную томографию ПС; также всем больным проводили электронейромиографию (ЭНМГ) обеих верхних конечностей с определением функционального состояния конечных ветвей плече-

[©] Гюльназарова С.В., Зубарева Т.В., Мамаев В.И., 2013

^{© «}Боль. Суставы. Позвоночник», 2013

[©] Заславский А.Ю., 2013

Оригінальні дослідження / Original Researches

вого сплетения. Проведена стимуляционная ЭНМГ периферических нервов: n.suprascapularis, n.axillaris, n.musculocutaneus, n.radialis в точке Эрба. Проанализированы параметры ЭНМГ: концевые латентности, амплитуда и площадь М-ответов. Рассчитано снижение М-ответа в процентах относительно индивидуальной нормы от интактной стороны. ЭНМГ-исследование было выполнено на аппарате «Нейромиан» (фирма «Медиком», Таганрог). Статистическая обработка результатов сделана в программе Excel с использованием критерия Стьюдента.

Пациентов наблюдали и обследовали в динамике в течение 3 лет после операции. Изучение результатов гемиартропластики (n = 22) в отдаленные сроки показало, что у 13 пациентов гемипротезы ПС были стабильными (группа СЭП), а у 9 — нестабильными (группа НЭП). Группы были сопоставимы по возрасту, давности травмы. В группе СЭП средний возраст больных составил 51 год, давность перелома — 3,9 месяца, в группе НЭП — соответственно 56 лет и 4,1 месяца.

Результаты

До операции эндопротезирования (ЭП) плечевого сустава в обеих анализируемых группах пациентов было исследовано состояние периферических нервов плечевого сплетения на поврежденной и интактной конечностях. Концевые латентности во всех случаях находились в границах нормы, поэтому не были взяты в качестве маркера данной патологии. Проанализированы значения амплитуды (мВ) и площади (мВ•с) М-ответов, изученных нервов, результа-

ты обеих групп сравнивали. Данные представлены в табл. 1 и 2.

В обеих группах пациентов до операции ЭП были численно определены нейропатии каждого нерва в процентах как отклонения от M-ответа на интактной конечности, которые были приняты за 100 % (рис. 1).

На рис. 1 показано, что наиболее выраженные и практически одинаковые нейропатии отмечены по n.axillaris в обеих группах: группа СЭП — 43 %, группа НЭП — 46 % от значений на интактной стороне, соответствующих индивидуальной норме. Частота нейропатий n.radialis в точке Эрба в обеих группах также оказалась одинаковой, но была менее выраженной и составила 55 %. При стимуляции n.suprascapularis в обе-

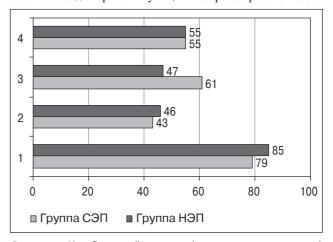


Рисунок 1. Исходные нейропатии (в процентах от нормы) до операции ЭП в группах СЭП и НЭП: 1 — n.suprascapularis, 2 — n.axillaris, 3 — n.musculocutaneus, 4 — n.radialis

Таблица 1. Исходные значения M-ответов периферических нервов на интактной и травмированной сторонах у пациентов со стабильными ЭП

	Амплитуда М-ответов (мВ)		Площадь М-ответов (мВ•с)	
Нервы	Сторона исследования		Сторона исследования	
	интактная	травмированная	интактная	травмированная
N.suprascapularis	6,15 ± 0,14	4,74 ± 0,96	37,02 ± 7,78	30,01 ± 7,33
N.axillaris	7,20 ± 0,71	3,39 ± 0,60	52,79 ± 6,99	20,61 ± 3,71
N.musculocutaneus	7,13 ± 0,61	4,51 ± 0,41	55,41 ± 6,49	32,74 ± 3,16
N.radialis	12,83 ± 1,96	7,25 ± 1,05	74,63 ± 13,05	39,38 ± 6,16

Таблица 2. Исходные значения M-ответов периферических нервов на интактной и травмированной сторонах у пациентов с нестабильными ЭП

	Амплитуда М-ответов (мВ)		Площадь М-ответов (мВ∙с)	
Нервы	Сторона исследования		Сторона исследования	
	интактная	травмированная	интактная	травмированная
N.suprascapularis	6,91 ± 1,28	5,59 ± 1,10	36,57 ± 8,16	32,43 ± 5,78
N.axillaris	6,01 ± 0,52	2,84 ± 0,39	43,30 ± 6,09	18,86 ± 3,82
N.musculocutaneus	6,22 ± 0,48	3,23 ± 0,68	49,89 ± 3,34	21,04 ± 4,74
N.radialis	10,10 ± 1,33	5,53 ± 1,21	60,63 ± 5,82	32,42 ± 8,20

Оригінальні дослідження / Original Researches

Таблица 3. Исходные ЭНМГ-данные исследования обоих кожно-мышечных нервов у пациента Е.

Амплитуда М-ответа (мВ)		Площадь М-ответа (мВ∙с)		Интегральное значение М-ответа на поврежденной стороне (в процентах к интактной сто-
Сторона исследования		Сторона исследования		
интактная	травмированная	интактная	травмированная	роне)
5,16	3,66	33,6	27,45	76

Таблица 4. Исходные ЭНМГ-данные исследования обоих кожно-мышечных нервов у пациентки Н.

Амплитуда М-ответа (мВ)		Площадь М-ответа (мВ∙с)		Интегральное значение М-ответа на поврежденной стороне (в процентах к интактной сто-
Сторона исследования		Сторона исследования		
интактная	травмированная	интактная	травмированная	роне)
8,66	3,62	70,69	25,5	39

их группах были отмечены небольшие отклонения от нормы (79 и 85 %), которые относятся к незначительным аксонопатиям. Следовательно, еще до операции у пациентов обеих групп была отмечена значительная нейропатия n.axillaris и умеренная — n.radialis в точке Эрба. Сравнивая результаты ЭНМГ n.musculocutaneus, надо отметить, что в группе НЭП нейропатия оказалась достоверно более выраженной (47 %), чем в группе СЭП (61 %).

Таким образом, анализ дооперационных ЭНМГ-данных показал, что у всех пациентов с застарелыми переломами ПОПК имелись сопутствующие нейропатии изученных нервов, однако выраженность их дисфункции оказалась различной. Так, была установлена наибольшая недостаточность функции кожно-мышечного нерва на стороне повреждения, что позволило рассматривать это как количественный критерий риска возможной нестабильности гемипротеза ПС. Последняя вероятна в случаях, когда показатели значения амплитуды и площади М-ответа n.musculocutaneus на травмированной конечности составляют менее 47 % относительно тех же показателей аналогичного нерва интактной конечности (патент 2446147 РФ).

Приводим клинические наблюдения дооперационного прогнозирования нестабильности гемипротезов ПС у больных с застарелыми переломами ПОПК.

Клинический пример 1. Пациент Е., 53 года, поступил по поводу неправильно срастающегося многооскольчатого перелома ПОПК. Давность травмы — 5 месяцев.

ЭНМГ-исследование больного Е. до операции показало, что функция кожно-мышечного нерва на травмированной стороне составила 76 % от интактной конечности, т.е. нарушение его функции у данного больного составило 24 %, что менее 47 %. Согласно формуле

патента у пациента Е. прогнозировали стабильность гемипротеза. Обследование через 1 год подтвердило благоприятный прогноз: клинически и рентгенологически гемипротез ПС у пациента Е. был стабилен (табл. 3).

Клинический пример 2. Пациентка Н., 57 лет, поступила по поводу застарелого переломовывиха ПОПК. Давность травмы — 6 месяцев.

Согласно данным ЭНМГ до операции функция кожно-мышечного нерва на травмированной стороне у больной Н. была снижена до 39 % от интактной конечности, т.е. нарушение функции этого нерва на поврежденной стороне у нее составило 61 %, что более 47 %. Согласно формуле патента у пациентки Н. прогнозировали вероятную нестабильность гемипротеза ПС. При обследовании через 18 месяцев после операции была установлена передняя миграция головки гемипротеза, т.е. неблагоприятный дооперационный прогноз гемиартропластики ПС у больной Н. подтвердился (табл. 4).

Выводы

- 1. Предоперационное обследование пациентов с застарелыми переломами и переломовывихами ПОПК должно включать ЭНМГ-диагностику состояния периферических нервов плечевого пояса.
- 2. При выборе способа лечения пациентов с застарелыми переломами и переломовывихами ПОПК следует учитывать разработанный авторами критерий функционального состояния кожномышечного нерва на стороне повреждения, который позволяет прогнозировать возможную нестабильность гемипротеза ПС еще на дооперационном этапе. Способ прост в исполнении, неинвазивен, доступен для реализации в профильных центрах и других лечебных учреждениях, занимающихся протезированием крупных суставов.

Список литературы

^{1.} Майков С.В. Пути повышения эффективности эндопротезирования плечевого сустава: Автореф. дис... канд. мед. наук. — СПб., 2012. — 24 с.

^{2.} Ненашев Д.В., Варфоломеев А.П., Майков С.В. Анализ отдаленных результатов эндопротезирования пле-

чевого сустава // Травматология и ортопедия России. — 2012. — \cancel{N} 2. — C. 71-78.

^{3.} Стафун С.С., Сергиенко Р.С. Отдаленные результаты однополюсного эндопротезирования плечевого сустава // Вестн. ортопедии, травматологии и протезирования. — 2008. — $N\!\!\!$ 4. — С. 49-53.

Оригінальні дослідження / Original Researches

- 4. Favard L., Lautmann S., Sirveaux F., Oudet D., Kerjean Y., Huguet D. Hemiarthroplasty versus reverse arthroplasty in the treatment of osteoarthritis with massive rotator cuff tear // 2000 shoulder <code>3000...</code> who to ten year follow-up. Sauramps medical, 2000. P. 261-268.
- 5. Goldman R.T. Functional outcome after humeral head replacement for acute three- and four-part proximal humeral fractures / R.T. Goldman, K.J. Koval, F. Cuomo [et al.] // J. Shouder Elbow Surg. 1995. Vol. 4. P. 81-86.
- 6. Naranja R.J., Janotti J.P. Displaced Tree-and Four-Part Proximal Humerus Fractures: Evaluation and Management // J. Am. Acad. Orthop. Surg. 2000. Vol. 8, № 6. P. 373-382.
- 7. Norris T.R., Green A., Mc Guigan F.X. Late prosthetic shoulder arthroplasty for displaced proximal humerus fractures // J. Shoulder Elbow Surg. 1995. Vol. 4. P. 271-280.

- 8. Sneppen O. Total shoulder replacement in rheumatoid arthritis: proximal migration and loosening / O. Sneppen, S. Fruengaard, H.V. Johannsen [et al.] // J. Shoulder Elbow Surg. -1996. Vol. 5. P. 47-52.
- 9. Tanner M.W., Cofield R.H. Prosthetic arthroplasty for fractures and fracture dislocations of the proximal humerus // Clin.Orthop. 1983. Vol. 179. P. 116-128.
- 10. Trail I.A., Nuttall D. The results of shoulder arthroplasty in patients with rheumatoid arthritis // J. Bone Jt. Surg. 2002. Vol. 84B. P. 1121-1125.
- 11. Пат. 2476147 Российская Федерация, МПК А 61 В 5/0488. Способ прогнозирования риска нестабильности эндопротеза плечевого сустава / Т.В. Зубарева, С.В. Гюльназарова; ФГБУ «Уральский НИИТО имени В.Д. Чаклина» Министерства здравоохранения и социального развития Российской Федерации. № 2012101384/14; Заявл. 16.01.2012; Опубл. 27.02.2013, Бюл. № 6. 5 с.

Получено 04.05.13 ■

Гюльназарова С.В., Зубарева Т.В., Мамаєв В.І. ФДБУ «Уральський НДІТО ім. В.Д. Чакліна», м. Єкатеринбург, Росія

Про нестабільність ендопротезів плечового суглоба в пацієнтів із застарілою травмою, ускладненою ушкодженням нервових стовбурів

Резюме. Наведений спосіб прогнозування нестабільності геміпротезів плечового суглоба у хворих із незрощеннями, переломами, що неправильно зрослися, й переломовивихами проксимального відділу плечової кістки. Спосіб достатньо простий, заснований на даних електронейроміографії, дозволяє на доопераційному етапі передбачити нестабільність плечового геміпротезу.

Ключові слова: геміпротез, плечовий суглоб, нестабільність, застарілий перелом, електронейроміографія. Gyulnazarova S.V., Zubareva T.V., Mamaev V.I. State Budgetary Educational Institution «Ural Research Institute of Traumatology and Orthopedics named after V.D. Chaklin», Yekaterinburg, Russia

On Instability of the Shoulder Prostheses in Patients with Old Trauma, Complicated With Damage Of The Nervous Trunks

Summary. The authors present the prognosis method of instability at shoulder hemiprostheses in patients with nonunion, malunion and fracture-dislocations of the proximal humerus. The technique is rather simple, based on the classic electroneuromyography parameters.

Key words: hemiprosthesis, shoulder joint, instability, old fracture, electroneuromyography.