ОЗЫҚ МАҚАЛА/ОРИГИНАЛЬНАЯ CTATЬЯ/ORIGINAL ARTICLE

УДК 616-089.5

Материал поступил в редакцию: 04-07-2014 Материал принят к печати: 24-07-2014

Non-invasive ventilation after thoracic surgery

Dossov M., Smailov M., Kolos A., Tojiboyev R.

National Scientific Medical Research Center, Astana city, Kazakhstan

Aim: To evaluate the effectiveness and appropriateness of the non-invasive ventilation (NIV) after thoracic surgery.

Methods: We have studied 2 groups of patients: the first group included 32 patients, who in the early postoperative period were performed NIV and a second group with 30 patients who received standard therapy. The physical parameters, blood gas levels, the length of stay in the intensive care department and patient satisfaction on a visual analog scale were evaluated. NIV sessions conducted up to 3 hours immediately after extubation in CPAP mode with the following parameters: starting from PEEP 4mbar and increasing every 10 minutes for 2 mbar until 10 mbar.

Results: During NIV systolic blood pressure in the first group was lower than in the second group (p <0,05). Blood gas levels (PaO 2) and respiratory index (PaO2/FiO2) was significantly higher in the first group. NIV with PEEP to 6mbar was rated "satisfactory" by 37.5% of patients and was rated as "good" by 65.6% of patients. More than 90% of patients rated "excellent" NIV with PEEP 4 mbar and 6mbar. Patients of the first group was transferred from ICU to clinical ward for one hour earlier (p <0.05) than those of the second group.

Conclusions: NIV was effectively with 6mbar of PEEP in patients after thoracic surgery and improved hemodynamic and blood gas parameters.

Keywords: non-invasive ventilation, thoracic surgery, early postoperative management.

J Clin Med Kaz 2014; 2(32): 43-48

Автор для корреспонденции: Досов М.А., АО «Национальный научный медицинский центр», отделение кардиохирургической анестезиологии и реанимации. Моб.тел: 8-701-688-63-80. E-mail: dossovmukhit@gmail.com

ТОРАКАЛДЫ ОПЕРАЦИЯЛАРДАН КЕЙІН ӨКПЕНІ ИНВАЗИВТІЕМЕС КӨМЕКШІ ЖЕЛДЕТУ

Досов М.Ә., Смаилов М.Б., Колос А.И., Тожибоев Р.Э.

Ұлттық ғылыми медициналық орталық, Астана қ., Қазақстан

Мақсаты: Торакалды операциялардан кейін өкпені инвазивтіемес көмекші желдетудің (ӨИКЖ) тиімділігін бағалау.

Зерттеу әдісі: Торакалды операциялардан кейінгі екі топтағы науқастар зерттелді. Бірінші топ (n=32) операциядан кейін ӨИКЖ жасалған науқастардан құралды, екінші топта (n=30) операциядан кейінгі кезенде әдеттегі емдеу шаралары жасалды. Гемодинамикалық көрсеткіштер, қан құрамындағы газдар мен жан сақтау бөлімінде жату ұзақтығы зерттелеіп, ӨИКЖ-ге науқастардың қанағаттану деңгейі визуалды аналогты шкала бойынша бағаланды. ӨИКЖ экстубациядан соң СРАР режимде РЕЕР 4mbar- дан бастап жасалды, РЕЕР деңгейі әрбір 10 минутта 2 mbarға көтеріліп отырылды.

Нэтижелері: ӨИКЖ жасау барысында систолалық артериалды қысым бірінші топта екінші топпен салыстырғанда сенімді түрде (p<0,05) төмен болды. Оттегінің парциалды қысымы және тынысалу индексі (PaO2/FiO2) бойынша бірінші топта сенімді түрде (p<0,05) жоғары болды. РЕЕР-ің деңгейі бойынша, 6mbar болғанда науқастардың 37,5% «қанағаттанарлық» және 65,6% науқас «жақсы» деп баға берді. Науқастардың 90% РЕЕР 4 пен 6mbar аралығын «өте жақсы» деп бағалады. ӨИКЖ жасалған науқастар сенімді (p<0,05) түрде бір сағатқа ерте шығарылды.

Тұжырым: ӨИКЖ РЕЕР 6mbar- ға дейін болғанда кеуде қуысына операция жасалған науқастарға операциядан кейін қолдану, науқастарда гемодинамикалық көрсеткіштерді жақсартып, қандағы газдар деңгейін тұрақтандырады.

Маңызды сөздер: өкпенің инвазивтіемес көмекші желдету, торакалды операциялар, ерте операциядан кейінге емдеу шаралары.

НЕИНВАЗИВНАЯ ВСПОМОГАТЕЛЬНАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ ПОСЛЕ ТОРАКАЛЬНЫХ ОПЕРАЦИЙ

Досов М.А., Смаилов М.Б., Колос А.И., Тожибоев Р.Э. Национальный научный медицинский центр, г. Астана, Казахстан

Цель: Оценка эффективности и целесообразности вспомогательной неинвазивной вентиляции легких (ВНИВЛ) после торакальных операций

Методы: Исследованы 2 группы пациентов: первая группа 32 пациента, которым в раннем послеоперационном периоде проводили ВНИВЛ и вторая группа пациентов (n=30) которым проводилась стандартная терапия. Оценивались физикальные данные, показатели газового состава крови, длительность нахождения в отделе интенсивной терапии и удовлетворенность пациента по визуально-аналоговой шкале. ВНИВЛ осуществлялась сеансами до 3 часов, сразу после экстубации в режиме СРАР с параметрами: начиная РЕЕР от 4mbar и увеличивая каждые 10 минут на 2 mbar до 10 mbar.

Результаты: Во время проведения ВНИВЛ систолическое артериальное давление в первой группе было ниже чем в второй группе (p<0,05). Показатели газового состава крови (PaO2) и дыхательный индекс (PaO2/FiO2) было достоверно выше в первой группе. ВНИВЛ с РЕЕР до 6mbar оценили «удовлетворительной» 37,5% пациента и «хорошей» - 65,6%. Более 90% пациента оценили «отличной» ВНИВЛ с РЕЕР 4 и 6mbar. Пациенты первой группы переведены на час раньше (p<0,05) чем пациенты второй группы.

Выводы: ВНИВЛ эффективнее с параметром РЕЕР до 6mbar у больных оперированных на органах грудной полости и улучшает показателей гемодинамики, газового состава крови.

Ключевые слова: вспомагательная неинвазивная вентиляция легких, торакальные операциии, рание послеоперационные ведение паци-

ВВЕДЕНИЕ

Применение искусственной вентиляции легких при дыхательной недостаточности различного генеза бесспорно [1]. Но, побочные и вредные эффекты ограничивают показания к расширенному применению искусственной вентиляции легких (ИВЛ) [1,2,3]. При таких ситуациях, применение вспомогательной неинвазивной вентиляции легких (ВНИВЛ) дает возможность решить проблему [1] исключая травмирующие способы подсоединения аппарата ИВЛ к дыхательным путям и сохранять спонтанное дыхание пациента [3,4,8,15,16].

Совершенствование техники операций на органах грудной полости и методов патогенетической терапии послеоперационном периоде, полностью не исключает возможность развития осложнении [8,11,13], по данным некоторых исследователей летальность после пневмоэктомии по поводу рака легкого составляет от 4% до 14%, а осложнении достигают до 52% [5].

Острые расстройства газообмена являются основными причинами неблагоприятного послеоперационного течения. Как правило, расстройство легочной вентиляции, нарушения бронхиальной проходимости, образования ателектазов и снижения способности больного к выполнению необходимой дыхательной работы являются проявлением синдрома дыхательных расстройств после торакальных операций. Неадекватная вентиляция легких становится не только источником гипоксемии и гиперкапнии, но и основной причиной развития ранних ателектазов и пневмоний [3,6,10,12]. При расстройствах вентиляции требуется повышать работу дыхания, но больные бывают не в состоянии обеспечить себе должный объем дыхания в послеоперационном периоде [1,6-8].

В связи с этим представляется целесообразность применения вспомогательной неинвазивной вентиляции легких в комплексе послеоперационной терапии. Применение ВНИВЛ в более ранние сроки дыхательной недостаточности, позволяет расширить рамки применения респираторной терапии, которая предотвратить развитие декомпенсации дыхания.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Оценить целесообразность и эффективность неинвазивной вспомогательной вентиляции легких у больных, оперированных на органах грудной полости.

МАТЕРИАЛЫ И МЕТОДЫ

Исследовано 62 больных, оперированных на органах грудной полости кардио-торакальном отделении Национального научного медицинского центра в 2013 году. Возраст больных колебался от 20 до 68 лет, из них мужчин 27, женщин 35. Все операции проводились под тотальной внутривенной анестезии с применением искусственной вентиляции легких. Степень анестезиологического риска оценивалось по ASA.

Все пациенты проспективно были разделены на

две группы простой рандомизацией. В первую группу включены пациенты (n=32) которым в раннем послеоперационном периоде проводили вспомогательную неинвазивную вентиляцию легких (ВНИВЛ). Вторую группу составили пациенты (n=30) ведение которых было обычной: после экстубации ограничивались подачей увлажненного кислорода и традиционными методами профилактики гиповентиляции (дыхательная гимнастика, дыхание с созданием сопротивления выдоху и

т.д.). Из исследования исключались пациенты с тяжелой сопутствующей патологией, больные которым требовалось повторная интубация и исходно тяжелые пациен-

ты, которым требовалось дополнительные методы лечения. Основные параметры по группам представлены в следующей таблице.

Таблица 1 - Основные параметры пациентов по группам

		I группа (n=32)		II группа (n=30)		
		Абс.	%	Абс.	%	
Возраст	20-40	12	37,5	10	33,3	
	41-60	17	53,1	18	60	
	61 <	3	9,4	2	6,7	
Пол	Мужчины	13	40,7	14	46,7	
	Женшины	19	59,3	16	53,3	
Рост (см)	Рост (см)		164,2±9,7		163,6±8,05	
Вес (кг)		68,4±9,01		67,9±16,5		
Риск анестезии по ASA		2,7±0,9		2,7±0,6		

Группы по возрасту, по полу и по росту, весу сопоставимы. Степень риска анестезии ASA не отличались.

Характер выполненных оперативных вмешательств по группам представлено следующей таблице.

Таблица 2 - Характер оперативных вмешательств по группам

	I группа (n=32)	II группа (n=30)	всего
Лобэктомия	8	7	15
Экомномная резекция сегмента легкого	10	8	18
Эхинококкэктомия из легкого и средостения	2	4	6
Удаление опухоли средостения	1	1	2
VATS удаление образования легкого и плевры	3	2	5
VATS биопсия легкого	2	2	4
Декортикация и биопсия легкого	6	6	12
Длительность операции (минут)	94,53±33,23	92,81±31,41	

Как видно по таблице больше всего проводилась экономная резекция сегмента легкого. Количество и характер выполненных операции по группам существенно не различались.

Во время исследования оценивались показатели гемодинамики (АД систолическое, АД диастолическое, ЧСС, SpO2) в режиме on-line аппаратом Nihon Kohden (Япония), газового состава крови (аппаратом Radiometr ABL 800), длительность нахождения в ОАРИТ. А так же, оценивали переносимость и удовлетворенность пациента. Переносимость ВНИВЛ определялась по субъективной оценке больного методом визуально-аналоговой шкалы с цифровым значением от 0 до 10, на которой больной отмечает степень своего дыхательного комфорта от "невозможность дышать, нехватка воздуха" до "легкое, свободное дыхание". Интерпретация проводилась следующим образом: 0-2 балла — плохой, 3-5 баллов — удовлетворительный, 6-8 баллов — хороший,

9-10 баллов — отличный. Измерение всех параметров исследования проводили на пяти этапах: 1-ый этап исходные (до операции) данные, 2-ой этап во время операции, 3-й этап после экстубации, 4-ый этап во время проведения ВНИВЛ, 5-ый этап перед переводом в профильное отделение.

ВНИВЛ осуществлялась сеансами до 3 часов, сразу после экстубации при помощи аппарата «VENTIlogic» в режиме СРАР с параметрами: начиная РЕЕР (positive end expiratory pressure-положительное давление конца выдоха) от 4mbar и увеличивая каждые 10 минут на 2 mbar, FiO2=30%. Использовали носо-ротовую маску. Головной конец кровати поднимали до 45°C с целью профилактики аэрофагии.

Статистическая обработка данных проводили программой SPSS («Statistical Package for the Social Sciences») параметрического критерия Стьюдента, непараметрическим критерия Пирсона.

РЕЗУЛЬТАТЫ

По результатам изучение показателей гемодинамики и газового состава крови до операции по группам достоверных различии не наблюда-

лось. Данные показатели различных этапов исследования представлены в следующей таблице.

Таблица 3 – Показатели на различных этапах исследования

Параметры	Группы	1-й этап	2-й этап	3-й этап	4-й этап	5-й этап
АДс	1 группа	135,7±3,8	118,8±5,8	127,4±6,9	117,5±4,8*	132,4±4,6
	2 группа	136,5±3,2	129,3±6,5	133,5±2,3	128,1±5,6	131,1±4,4
A II –	1 группа	82,5±4,2	79,3±7,5	82,4±4,7	77,1±3,7	86,3±4,5
АДд	2 группа	84,6±2,9	78,5±2,1	84,4±2,1	79,3±3,2	86,5±2,1
ЧСС -	1 группа	78,6±6,7	84,6±7,8	88,8±6,2	80,5±4,1*	78,1±2,5
900	2 группа	78,3±2,5	81,4±2,8	75,7±3,3	88,1±2,1	80,1±2,8
чд -	1 группа	16,2±4,2	-	17,2±4,8	14,6±4,2	16,6±2,3
	2 группа	16,6±2,4	-	17,8±2,3	17,2±1,2	16,8±3,3
PaO2	1 группа	84,6±11,3	$146,7\pm20,3$	112,2±9,7	125,3±8,3*	105,4±5,3*
	2 группа	86,1±13,5	148,4±19,8	116,4±8,8	102,5±5,1	93,6±6,8
PCO2	1 группа	40,5±1,5	39,5±1,8	41,2±2,6	37,3±1,6*	36,8±2,7*
FCO2	2 группа	40,8±1,3	40,1±1,2	42,1±3,8	42,3±1,1	40,9±1,4
рН	1 группа	7,35±1,1	7,36±1,4	7,38±2,1	7,36±2,5	7,36±0,9*
	2 группа	7,39±0,1	$7,37\pm0,01$	7,39±1,1	7,37±1,02	7,38±0,1
BE -	1 группа	0,7±0,2	-3,4±0,2	-3,1±0,9	-3,1±0,1	3,2±0,8
	2 группа	1,1±0,4	-3,4±1,7	-4,1±0,8	-2,8±0,9	0,2±0,01
PaO2/FiO2	1 группа	471,1±15,7	395,2±13,5	273,4±12,9	305,1±2,3*	332,3±14,2*
PaO2/F1O2	2 группа	472,4±21,2	408,1±21,3	279,3±11,3	399,1±21,1	442,1±23,5

Примечание: * - p<0,05.

Как видно в данной таблице, исходные параметры исследования не различались. На втором этапе, то есть во время операции проведенной под ТВА гемодинамические показатели: газовый состав крови достоверных различии не показали. После экстубации (3-й этап) в контрольной группе систолическое артериальное давление было выше по сравнению с основной группой, но достоверных различии нет. Во время проведения ВНИВЛ (4-ый этап) систолическое давление в основной группе было ниже чем во второй группе (р<0,05). По диастолическому давлению различии не было, но частота сердечного сокращения достоверно было ниже в первой группе. Показатели газового состава крови во время проведения ВНИВЛ имел существенное различие (р<0,05), то есть РаО2 было выше в группе где прово-

дилась ВНИВЛ. А так же по уровню рСО2 наблюдалось статистически достоверное различие, в первой группе в среднем составил рСО2=37,3±1,6. Соотношение различия парциального давления кислорода в артерии и фракции кислорода во вдыхаемом воздухе (PaO2/FiO2) статистически достоверно было выше во второй группе. Перед переводом больного (5-ый этап) в профильное отделение, по показателям гемодинамики, по ЧДД и кислотно-щелочному составу крови достоверных различии не было, но по показателям парциального давления кислорода в артерии и рСО2 имелось достоверное различие в пользу основной группы. Результаты исследования переносимости (комфортности) проведения ВНИВЛ и удовлетворенности пациента дали важные результаты, и это отражено в следующей таблице.

Таблица 4 - Оценка переносимости и удовлетворенность пациента зависимости от параметров ВНИВЛ (по количеству пациентов)

	PEEP=4	PEEP-6	PEEP=8	PEEP=10
Плохой (0-2 балл)	1	1	14	26
Удовлетворительный (3-5 балл)	4	8	13	5
Хороший (6-8 балл)	12	9	5	1
Отличный (9-10 балл)	15	14	-	-

На этапе проведения ВНИВЛ в основной группе с различным уровнем РЕЕР, больные плохо перенесли параметры когда РЕЕР было выше 8mbar, более 93% пациента оценили его как плохой и дали от 0 до 2 баллов и около 6% пациентов «плохо» перенесли саму процедуру ВНИВЛ из-за плохого субъективного статуса (чувство

нехватки воздуха) и оценили как «плохой». При ВНИВЛ с PEEP=8mbar 40% пациента оценили «удовлетворительной», а 15,6% пациента уровень PEEP=10mbar оценили удовлетворительной и один пациент (3%) оценил «хорошей». 37,5% пациента оценили «удовлетворительной» PEEP до 6mbar, а так же 65,6% пациента оценили

«хорошей». Более 90% пациента ВНИВЛ с РЕЕР 4 и 6mbar оценили как «отличный».

Немаловажным показателем при оказании хирургической помощи является время нахождения пациента в отделении интенсивной терапии и длительность искусственной вентиляции легких. Как известно длительный ИВЛ и длительное нахожде-

ние пациента в отделении интенсивной терапии повышает риск развития назокомиальной пневмонии и ухудшает показателей «затрата - эффективности» лечения. Данные по результатам исследования времени экстубации после операции и времени нахождения больных в отделении интенсивной терапии представлены в таблице 5.

Таблица 5 – Время экстубации и перевода в профильное отделение по группам

	I группа (n=32)	II группа (n=30)	p
Время экстубации (минут)	156,4±24,5	158,2±28,5	p>0,05
Время перевода в профильное отделение (час)	17,3±1,2	18,5±1,5	p<0,05

Как видно время экстубации в основной и контрольной группе статистический достоверно не отличались. По времени перевода в профильное отделение,

пациенты которым проводилось ВНИВЛ переведены на час раньше (p<0,05) чем пациенты которым не проведен ВНИВЛ.

ОБСУЖДЕНИЕ

По показателям гемодинамики на этапе операции по группам различия не наблюдалось, так как во время операции анестезия проводилось строгим контролем адекватности анестезии с применением всех требовании гарвардского стандарта. Повышение систолического давления на этапе экстубации объясняется ответом сердечно-сосудистой системы после пробуждения на наличие интубационной трубки в дыхательных путях.

По показателям систолического артериального давления и частоты сердечного сокращения на этапе проведения ВНИВЛ в основной группе было ниже (p<0,05.), это возможно за счет повышения внутригрудного давления во время ВНИВЛ, которое уменьшает преднагрузку сердца. Так же, адекватная оксигенация и насыщение кислородом крови, при сохраненном уровне доставки и потребления кислорода организмом, не приводит к повышению работы дыхания, тем самым сохраняя нормальные показатели гемодинамики.

Частота дыхания после экстубации у обоих групп было выше (р>0,05.) чем в исходном, это объясняется физиологической реакцией на наличие интубационной трубки в дыхательных путях. Показатели газового состава крови на этапе проведения торакальных операции было выше, так как проводилось ИВЛ строгим контролем всех параметров вентиляции и оксигенации. На этапе (5-ый) экстубации у всех пациентах газовый состав артериальной крови показал нормальные значения. Во время проведения ВНИВЛ парциальное давление кислорода первой группе было выше (р<0,05.), так как ВНИВЛ позволяет предотвратить развитие послеоперационных ателектазов и сохраняет долю вентилируемых альвеол, а так же, проводится адекватная элеминация углекислого газа, тем самым сохраняя нормальное значение PCO2 (35,3 \pm 1,6; p<0,05). У пациентов, которым не проводилось ВНИВЛ отмечалась умеренная гиперкапния по сравнению с первой группой (PCO2-35,3 \pm 1,6), причиной этого, является щадящее поверхностное и частое дыхание пациента из-за боли в области послеоперационной раны и посленаркозного состояния (сонливость) некоторых пациентов. На этапе перевода пациентов в профильное отделение во 2-ой группе отмечалось снижение парциального давления углекислого газа (32,3 \pm 1,4; p<0,05) на фоне учащения дыхания (18,8 \pm 3,3; p>0,05). Соотношение различия парциального давления кислорода в артерии и фракции кислорода во вдыхаемом воздухе (PaO2/FiO2) было ниже (p<0,05) на фоне проведения ВНИВЛ и на этапе перевода, так как ВНИВЛ позволяет сохранять адекватную альвеолокапилярную перфузию.

При выборе оптимальных параметров ВНИВЛ на основе удовлетворенности пациента, большинство пациентов (65,6 и 90%) РЕЕР до 6mbar оценили как «хорошей» и «отличной», так как, в данных параметрах давления пациенты осуществляют выдох без усилии и без препятствии. При ВНИВЛ с РЕЕР выше 8mbar пациенты плохо переносят, так как положительное давление в конце выдоха создает определенное препятствие выдоху и требует некоторое усилие дыхательных мышц во время выдоха, в связи с этим оценили как «плохой». В ходе исследования, при просьбе пациентов, объяснить причину «плохой» оценки ВНИВЛ, большинство (более 72%) указали на нехватку воздуха и удушье.

Таким образом, по показателям гемодинамики, газового состава артериальной крови показывают положительные результаты при проведении ВНИВЛ у пациентах оперированных на клетке грудной. И с точки зрения «удовлетворенности пациента», которое имеет немаловажное место в современной медицине, показывает положительные стороны раннего применения ВНИВЛ после оперативного лечения пациентов с бронхо-легочной патологией.

выводы

Применение ВНИВЛ у больных оперированных на грудной полости целесообразно, так как улучшает показателей гемодинамики и газового состава крови и позволяет предупредить развитие дыхательной недостаточности и эффективнее ВНИВЛ с параметром РЕЕР

до 6mbar, которое легко переносится пациентами, без энергетических затрат на вентиляцию легкого и улучшает «удовлетворенность пациента», а так же сокращает время нахождения пациентов в отделении интенсивной терапии.

ЛИТЕРАТУРА

- 1. Юревич В.М. Вспомогательная неинвазивная вентиляция легких: вчера, сегодня, завтра // Вестник интенсивной терапии. 2013.№ 2.-С.59-61.
- 2. Кассиль В.Л., Выжигина М.А., Лескин Г.С. Искусственная и вспомогательная вентиляция лёгких // Москва: Медицина; 2004. 18 с.
- 3. Кулен Р., Гуттманн Й., Россент Р. Новые методы вспомогательной вентиляции легких // Москва: Медицина; 2004. -C.4–10.
- 4. Nava S., Gregoretti C. et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients // Crit. Care Med.- 2005. Vol.33. P. 2465-2470.
- 5. Winck J.C., Azevedo L.F., Costa–Pereira A. et al. Efficacy and safety of non–invasive ventilation in the treatment of acute cardiogenic pulmonary edema: a systematic review and meta–analysis // Crit. Care. 2006. Vol.2. P. 10.
- 6. Кассиль В.Л. Искусственная вентиляция легких / В.Л. Кассиль. Москва. 2001. 14 с.
- 7. Основы ИВЛ / С.А. Горячев, И.А. Савин. Москва. 2013. 68 с.
- 8. Ferrer M., Esquinas A., Leon M., et al. Noninvasive ventilation in severe hypoxemic respiratory failure. A randomized clinical trial // Am. J. Respir. Crit. Care Med. 2003. Vol.168. P. 1438-1444.
- 9. Sean P. et all. CMAJ. 2011. Vol. 183(3). P. 195–214.
- 10. Еременко А.А., Левиков Д.И., Егоров В.М. и др. Использование неинвазивной масочной вентиляции легких у кардиохирургических больных с острым респираторным дистресс-синдромом // Анестезиология и реаниматология. 2004. № 5.-С.14-17.
- 11. arcía-Delgado M, Navarrete I, García-Palma MJ, Colmenero M. Postoperative respiratory failure after cardiac surgery: use of noninvasive ventilation // J Cardiothorac Vasc Anesth. 2012. Vol.26 (3). P. 443-7.
- 12. Полушин Ю.С. Неинвазивная вентиляция легких в интенсивной терапии // Анестезиология и реаниматология. -2005. № 4.- С.74-79.
- 13. Вартанов И.В. Применение неинвазивной вентиляции легких у больных с высоким риском послеоперационных кардиопульмональных осложнений // Анестезиология и реаниматология. 2007. № 3.- С.17- 19.
- 14. Борисов И.А. Попов Л.В. Неинвазивная вспомогательная вентиляция легких в комплексной респираторной терапии у больных с эмболией легочных артерии // Тезисы IV Сессии МНОАР. Москва. 2009. С. 434-435.
- 15. Perrin C., Jullien V., Vénissac N., Berthier F., Padovani B., Guillot F., et al. Prophylactic use of noninvasive ventilation in patients undergoing lung resection surgery // Respir Med. 2007. Vol.101. P. 572-8.
- 16. Liao G, Chen R, He J. Prophylactic use of noninvasive positive pressure ventilation in post-thoracic surgery patients: A prospective randomized control study // J Thorac Dis. 2010. Vol. 2. P. 205-9.