БОЛЬНЫХ С ОГРАНИЧЕННЫМ ДВИГА-ТЕЛЬНЫМ РЕЖИМОМ ПРИ ТРАВМАТИЧЕСКОЙ БОЛЕЗНИ СПИННОГО МОЗГА

Гумарова Л.Ш., Бодрова Р.А.

Кафедра реабилитологии и спортивной медицины КГМА, г. Казань

Ежегодно в России становятся инвалидами более 8 000 больных с последствиями спинальной травмы, причём в основном лица молодого трудоспособного возраста [Кочетков А.В., 2008г]. Принимая во внимание наибольшее количество осложнений в виде нарушения деятельности внутренних органов. пролежней, белкового истощения организма, остеопороза, вторичной инфекции различной локализации, связанных с длительной иммобилизацией больных, наиболее актуальным является изучение методов коррекции имеющихся нарушений и способов из профилактики.

Учитывая патофизиологические нарушения у больных с ограниченным двигательным режимом, целесообразным представляется комплексный подход в коррекции трофологического статуса у данной группы включающий обеспечение адекватного количества питательных применение веществ, индивидуальных физических методов воздействия, обладающих трофостимулирующим действием.

<u>Цель исследования</u> — изучить влияние нарушений трофологического статуса и способы их коррекции у больных с ограниченным двигательным режимом с травмой спинного мозга.

Под наблюдением находилось 19 больных с травматической болезнью спинного мозга (ТБСМ) с ограничением двигательной активности (20,1±2,7 баллов по шкале Бартела) в возрасте от 18 до 55 лет без сопутствующей соматической патологии. При исследовании трофологического статуса по клиниколабораторным критериям, калиперметрическим способом Durmin-Womersley у 92% больных имелась различная степень недостаточности питания.

Всем больным на фоне стандартной терапии проводилась комплексная коррекция трофологического статуса, воздействие активной лечебной гимнастики, применение нейроэлектростимуляции. После проведенного лечения у больных отмечалась тенденция к повышению массы тела на 17%, причем, за счёт мышечного компонента; увеличению абсолютного числа лимфоцитов в крови на 21%, альбуминов – на 23%.

Учитывая, что у пациентов с травмой спинного мозга недостаточность питания способствует развитию инфекционных осложнений, образованию пролежней, снижению процессов репарации, регенерации и является значительным фактором в развитии приобретённого иммунодефицита, сердечной И дыхательной недостаточности, предложенный комплексный подход в коррекции трофологических нарушений категории больных позволит снизить летальность, vменьшить количество осложнений. улучшить эффективность восстановительного лечения больных, повысить качество жизни.

074. НАРУШЕНИЕ УЛЬТРАСТРУКТУРЫ ГЕПАТОЦИТОВ ПРИ ХРОНИЧЕСКОМ

ГЕПАТИТЕ, ФОРМИРУЮЩЕМСЯ ПОД ВОЗДЕЙСТВИЕМ МЕТАЛЛОПОЛЮТАНТОВ

Гутникова А.Р., Байбеков И.М., Саидханов Б.А., Ашурова Д.Д., Махмудов К.О.

РСЦХ им. Акад. В.Вахидова, Ташкент, Узбекистан

<u>Цель исследования:</u> изучить изменение ультраструктуры гепатоцитов при токсическом гепатите, развивающемся при хроническом воздействии металлополютантов.

Методы. Исследования выполнены на 70 белых крысах массой 150-180г. Интоксикацию моделировали внутрибрюшинным введением композиционной смеси из солей меди, марганца, молибдена и хрома, типичных для Ташкентской области, взятых В Cu:Mn:Mo:Cr=100: 19: 16: 2. что соответствует соотношению их содержания в почве в зоне АГМК. Смесь вводили через день в течение 4 недель. Максимальное содержание каждого из металлов в смеси не превышает DL₁₀. Ультратонкие срезы ткани печени, полученные на ультратоме «Ultracut», контрастировали в аппарате «Ultrostainer» и просматривали в электронном микроскопе Hitachi H-600.

Результаты. Установлено, что при поступлении металлополютантов формируются выраженные изменения ультраструктуры гепатоцитов и синусоидов. Эти изменения характеризуются мозаичностью. В некоторых гепатоцитах отмечается расширение профилей снижение содержания гликогена, 3ЭС, уменьшение просветов пространств Диссе. Расширение 39C сопровождается профилей умеренным расширением перинуклеарных пространств, уменьшением числа ядерных пор в ядерной оболочке.

Наиболее типичным ультраструктурным проявлением изменений гепатоцитов является резкое набухание митохондрий с выраженным просветлением их матрикса и редукцией крист. Это сопровождается появлением митохондрий причудливой формы. Часто встречаются подковообразные митохондрии.

митохондрий части выявляются Это миелиноподобные тельца. указывает биодеградацию этих органелл. Отмечается расширение жёлчных канальцев. У полюсов гепатоцитов вблизи канальцев часто встречаются электронноплотные тельца, типа лизосом . Отмечено увеличение содержания лизосом в цитоплазме гепатоцитов. Это нередко сопровождается гипертрофией комплекса Гольджи гладкой эндоплазматической сети (ГЭС). Розетки гликогена при этом становятся меньше, и часто встречаются единичные гранулы этих включений. Наряду с возрастание числа профилей ГЭС в цитоплазме клеток появляются крупные вакуоли с хлопьевидным содержимым низкой электронной плотности или же гомогенные электроннопрозрачные. По размерам они с размерами ядер. Это сопровождается переполнением синусоидов гомогенным содержимым, скоплением эритроцитов и других клеток крови. Некоторые гепатоциты содержат липидные гранулы, которые по размерам меньше, описанных выше образований с гомогенным или хлопьевидным содержимым. Нередко в гепатоцитах выявляются большие поля практически лишённых органелл за исключением мелких митохондрий. Эти поля образованы