Клинико-генетические характеристики моногенных идиопатических генерализованных эпилепсий

Е.Л. Дадали, И.В. Шаркова, Е.Ю. Воскобоева

Представлен краткий обзор клинико-генетических характеристик описанных к настоящему времени моногенных вариантов идиопатических генерализованных эпилепсий (ИГЭ). Основное внимание обращено на варианты, манифестирующие в детском возрасте. В зависимости от особенностей клинических проявлений и тяжести течения предложено выделять 4 группы заболеваний. Выявлено, что значительное количество генетических вариантов ИГЭ обусловлено мутациями в генах, белковые продукты которых формируют вольтажзависимые (натриевые и калиевые) и лигандзависимые (у-аминомасляная кислота – ГАМК) каналы, холинергические рецепторы, а также участвуют в метаболизме ГАМК в нейронах коры головного мозга. Освещены основные патогенетические механизмы возникновения моногенных ИГЭ, а также проведен анализ функциональной значимости мутаций для планирования лечебных мероприятий и подбора адекватной терапии эпилептических пароксизмов с учетом этиопатогенетических механизмов развития ИГЭ. Обоснована необходимость разработки эффективной молекулярно-генетической диагностики данной генетически гетерогенной группы заболеваний, которая будет способствовать профилактике возникновения повторных случаев моногенных ИГЭ в отягощенных семьях.

Ключевые слова: идиопатические генерализованные эпилепсии, ранняя эпилептическая энцефалопатия, вольтажзависимые каналы, лигандзависимые каналы, холинергические рецепторы нейронов головного мозга.

Введение

В настоящее время в соответствии с существующей систематикой выделяют симптоматические, криптогенные и идиопатические эпилепсии. Идиопатические генерализованные эпилепсии (ИГЭ) - группа патологических состояний, характеризующихся возникновением эпилептических приступов, причина которых не ясна, при отсутствии структурных повреждений мозга и очаговой неврологической симптоматики [2, 3, 16]. Заболевания этой группы манифестируют в различных возрастных периодах и характеризуются возникновением полиморфных пароксизмов (абсансов, миоклоний, тонико-клонических судорожных приступов). Примерно в 70% случаев ИГЭ впервые возникает в детском возрасте [9]. В клинической практике традиционно используется классификация, предложенная в 1989 г. Международной лигой по борьбе с эпилепсией, в которой выделяют 8 основных групп ИГЭ на основании различий в возрасте манифестации и особенностей клинических проявлений [4, 17]:

- 1) доброкачественные семейные судороги новорожденных;
 - 2) доброкачественные судороги новорожденных;

ФГБУ "Медико-генетический научный центр" РАМН, Москва.

Елена Леонидовна Дадали – докт. мед. наук, вед. науч. сотр. научно-консультативного отдела.

Инна Валентиновна Шаркова – канд. мед. наук, науч. сотр. научно-консультативного отдела.

Елена Юрьевна Воскобоева – канд. мед. наук, вед. науч. сотр. лаборатории наследственных болезней обмена веществ.

- 3) доброкачественная миоклоническая эпилепсия раннего возраста;
 - 4) детская абсансная эпилепсия;
 - 5) ювенильная абсансная эпилепсия;
 - 6) ювенильная миоклоническая эпилепсия;
- 7) эпилепсия с генерализованными судорожными приступами пробуждения;
- 8) эпилепсии с приступами со специфическими способами провокации (большинство фотосенситивных эпилепсий).

Этиопатогенетические механизмы наследственных ИГЭ

До недавнего времени предполагалось, что в основном ИГЭ имеет мультифакторную природу и возникает при воздействии неблагоприятных факторов внешней среды у пациентов с генетической предрасположенностью, которую формируют полиморфизмы в нескольких генах, один из которых является главным [15, 22]. К настоящему времени идентифицировано 6 генов, полиморфизмы которых вносят основной вклад в формирование генетической предрасположенности к ИГЭ. Эти гены картированы на хромосомах, и установлены белковые продукты их экспрессии. Еще 6 генов картированы, но не идентифицированы, и их поиск продолжается (табл. 1).

Однако в исследованиях последних лет было выявлено, что не менее 40% всех ИГЭ имеют моногенную природу [5]. К настоящему времени идентифицировано 44 гена, мутации в которых приводят к возникновению моногенных вариантов ИГЭ, манифестирующих в различном возрасте и имеющих доброкачественное течение либо характеризую-

Таблица 1. Гены, полиморфизмы в которых формируют предрасположенность к мультифакторным ИГЭ

Хромосома	Ген	Продукт гена		
8q24	Не установлен	-		
14q23	Не установлен	-		
9q32	Не установлен	-		
10q25	Не установлен	-		
10p25	Не установлен	-		
16p	CACNA1H	$lpha_{_{1}}$ -субъединица кальциевого канала		
15q14	Не установлен	-		
3q13	CASR	Участвует в гомеостазе кальция		
2q23	CACNB4	β ₄ -субъединица кальциевого канала		
2q22	GABRD	δ-субъединица рецептора ГАМК		
3q36	CLC2A2	Хлорный канал		
1p34	SLC2A1	Транспортер глюкозы в мозге		
Обозначения: ГАМК – у-аминомасляная кислота.				

щихся формированием ранней эпилептической энцефалопатии (РЭЭ). Локализация генов, функции их белковых продуктов и обусловленные ими заболевания представлены в табл. 2.

Как видно из табл. 2, большинство моногенных ИГЭ обусловлены мутациями в генах, кодирующих вольтаж- и лигандзависимые ионные каналы нейронов, ферменты или никотиновые рецепторы, играющие ключевую роль в формировании и проведении нервного импульса в центральной нервной системе (ЦНС).

Ионные каналы нейронов – это специализированные белки, образующие проход, по которому заряженные ионы могут пересекать клеточную мембрану по электрохимическому градиенту. Они могут находиться в открытом или закрытом состоянии и регулировать скорость потока ионов через мембрану. Существуют отдельные каналы для ионов натрия, кальция, калия и хлора, являющиеся вольтажзависимыми. Направленное движение ионов натрия и калия в мембране нейрона приводит к ее деполяризации и возникновению нервного импульса.

Таблица 2. Гены, мутации в которых приводят к появлению моногенных вариантов ИГЭ

Ген	Хромосома	Функции белка	Заболевание	
ARX	Xq21.3	Транскрипционный фактор	РЭЭ І типа	
ALDH7A1	5q23	Альдегиддегидрогеназа	Пиридоксинзависимые судороги	
ARHGEF9	Xq11.1	Фермент семейства ГТФаз	РЭЭ VIII типа	
CDKL5	Xp22.1	Сериновая протеинкиназа, участвует в дифференциации и апоптозе нейронов	РЭЭ II типа	
CHRNA4	20q13.3	Нейрональный холинергический рецептор, α-субъединица	Ночная лобная эпилепсия I типа	
CHRNA2	8p21.2	Нейрональный холинергический рецептор, α-субъединица	Ночная лобная эпилепсия IV типа	
CHRNB2	1q21.3	Нейрональный холинергический рецептор, β-субъединица	Ночная лобная эпилепсия III типа	
CLCN2	3q36	Хлорный канал II типа	 ИГЭ XI типа Ювенильная миоклонус-эпилепсия VIII типа Ювенильная абсанс-эпилепсия II типа 	
CLDN16	3q28	Осуществляет реабсорбцию катионов в почках	Судороги при гипомагниемии III типа	
CSTB	21q22	Ингибитор цистеиновых протеаз	Миоклонус-эпилепсия Унферрихта-Лундборга	
CPA6	8q13.2	Карбоксипептидаза	Височная эпилепсия V типаСемейные фебрильные судороги XI типа	
EPM2A	6q24.3	Фермент семейства фосфатаз	Миоклонус-эпилепсия Лафоры IIA типа	
EGF	Xp22.2	Эпидермальный фактор роста	Судороги при гипомагниемии IV типа	
FXYD2	11q23	Регулятор транспорта ионов через мембрану	Судороги при гипомагниемии II типа	
GABRG2	5q31	Рецептор ГАМК-ү	 Генерализованная эпилепсия с фебрильными судорогами плюс III типа Семейные фебрильные судороги VIII типа 	
GABRD	1p36	Рецептор ГАМК-δ	 Генерализованная эпилепсия с фебрильными судорогами плюс V типа ИГЭ X типа 	
GNAO1	16q.12.2	Гуанин-нуклеотидсвязывающий белок	РЭЭ XVII типа	
GOSR2	17q21	Член рецепторного комплекса мембраны нейронов	Ювенильная миоклонус-эпилепсия прогрессирующая VI типа	

Таблица 2. Окончание

Ген	Хромосома	Функции белка	Заболевание		
GPR98	5q14	Активатор внутриклеточных путей сигнальной	Семейные фебрильные судороги IV типа		
KCNQ2	20q13	трансдукции Кальциевый канал	Доброкачественные семейные неонатальные судороги I типа РЭЭ VII типа		
KCNQ3	8q24.2	Кальциевый канал	Доброкачественные семейные неонатальные судороги II типа		
KCNT1	9q34	Белок, содержащий тетрамеризирующий домен калиевых каналов	Прогрессирующая миоклонус-эпилепсия с внутриклеточными включениями РЭЭ XIV типа		
KCTD7	7q11.2	Белок калиевых каналов	Ночная лобная эпилепсия V типа		
LGI1	10q24	Регулятор постнатального развития глутаматергических синапсов	Семейная височная эпилепсия І типа		
NHLRC1	6p22.3	Субъединица убиквитин-лигазы	Миоклонус-эпилепсия Лафоры IIB типа		
PCDH19	Xq22.1	Кальцийзависимый кадерин, обеспечивает адгезию клеток в мозге	РЭЭ IX типа		
PLCB1	20p12	Фосфолипаза С, β-субъединица. Обеспечивает сигналинг ацетилхолиновых рецепторов гиппокампа и формирование коры головного мозга	РЭЭ XII типа		
PNKP	19q13.3	Фермент фосфатаза, обеспечивает фосфорилирование нуклеиновых кислот	РЭЭ X типа		
PRICKLE1	12q12	Функции не изучены	Миоклонус-эпилепсия IB типа		
PRICKLE2	3p14	Функции не изучены	Миоклонус-эпилепсия V типа		
PRRT2	16p11.2	Трансмембранный белок	Семейные инфантильные судороги с пароксизмальным хореоатетозом		
SCN1A	2q24.3	Натриевый канал I типа	 Генерализованная эпилепсия с фебрильными судорогами плюс II типа Семейные фебрильные судороги IIIA типа РЭЭ VI типа (синдром Драве) 		
SCN2A	2q24.3	Натриевый канал II типа	 РЭЭ XI типа Доброкачественные семейные неонатальные судороги III типа 		
SCN8A	12q13.1	Натриевый канал VIII типа	РЭЭ XIII типа		
SCN9A	2q24.3	Натриевый канал IX типа	 Генерализованная эпилепсия с фебрильными судорогами VII типа Семейные фебрильные судороги IIIВ типа 		
SLC25A22	11p15.5	Транспортный белок митохондрий	РЭЭ III типа		
SCARB2	4q21.1	Лизосомальный интегральный мембранный белок	Прогрессирующая миоклоническая эпилепсия IV типа с почечной недостаточностью или без нее		
SCN1B	19q13	β-субъединица натриевого канала I типа	Генерализованная эпилепсия с фебрильными судорогами I типа		
SPTAN1	9q31	Белок филаментов цитоскелета	РЭЭ V типа		
ST3GAL3	1p34.1	Фермент семейства сиалилтрансфераз, функционирует на мембране аппарата Гольджи	РЭЭ XV типа		
STXBP1	9q34	Синтаксинсвязанный белок. Регулирует функцию синаптических пузырьков	РЭЭ IV типа		
SZT2	1p34.2	Гомолог белка судорожного порога 2	РЭЭ XVIII типа		
TBC1D24	16p13.3	Активатор белков, координирующих транспорт внутриклеточных везикул	РЭЭ XVI типа Семейная инфантильная миоклоническая эпилепсия		
TRPM6	9q21.13	Обеспечивает транспорт и гомеостаз магния	Судороги при гипомагниемии І типа		
Оборначения: ЕДФары — ферменты гилиолая которые свазывают и гилиолизмот гуанозинтрифосфат					

Обозначения: ГТФазы – ферменты гидролаз, которые связывают и гидролизуют гуанозинтрифосфат.

Наряду с вольтажзависимыми каналами существенная роль в формировании нервного импульса принадлежит рецепторактивируемым лигандзависимым кана-

лам (АТФ-активируемые (АТФ – аденозинтрифосфат), ГАМК-зависимые (ГАМК – γ -аминомасляная кислота) и др.), а также нейрональным никотиновым рецепторам ацетилхо-

Таблица 3. Гены, мутации в которых приводят к развитию моногенных вариантов ИГЭ с манифестацией в неонатальном или грудном возрасте

	Вариант ИГЭ	ОМІМ	Ген	Хромо- сома	Насле- дование	
	Доброкачественные	е семейнь	ые неоната	льные судо	ороги	
	I тип					
	с миокимиями	121200	-	_	АД	
	изолированные миокимии	606437	KCNQ2	20q13	АД	
	II тип	121201	KCNQ3	8q24	АД	
	III тип	607745	SCN2A	1q24.3	АД	
	Пиридоксинзависимые судороги					
		266100	ALDH7A1	5q23.2	AP	
Судороги при гипомагниемии			'			
	I тип	602014	TRPM6	9q21	AP	
	II тип	154020	FXYD2	11q23	АД	
	III тип (почечный)	248250	CLDN16	3q28	АД	
	IV тип	611718	EGF	4q25	AP	
	Семейные инфантильные судороги с пароксизмальным хореоатетозом					
		602066	PRRT2	16p11.2	АД	

Обозначения здесь и в табл. 4-6: OMIM – Online Mendelian Inheritance in Man (Менделевское наследование у человека – электронная база данных).

лина. Лигандзависимые каналы открываются, когда медиатор, связываясь с их наружными рецепторами, меняет их конформацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лигандзависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель, и времени, в течение которого он там находится.

Нейрональные никотиновые рецепторы ацетилхолина расположены в пресинаптических мембранах коры головного мозга, где обеспечивают возбуждение и торможение, высвобождение медиатора, выполняя функцию катионного канала. Эти рецепторы являются пентамерными комплексами с различными субъединицами.

Определение функции белковых продуктов генов, ответственных за возникновение моногенных вариантов ИГЭ, позволяет не только установить патогенетические механизмы отдельных генетических вариантов, но и подойти к разработке их более эффективного лечения [10].

Клинико-генетические особенности моногенных ИГЭ

Моногенные варианты ИГЭ могут манифестировать в разном возрасте, иметь различную тяжесть течения и наследоваться аутосомно-доминантно (АД), аутосомно-рецессивно (АР) и X-сцепленно рецессивно или X-сцепленно

доминантно. Наиболее часто ИГЭ возникают в раннем детском возрасте. В зависимости от возраста начала и характера течения заболевания можно выделить 4 основные группы моногенных вариантов ИГЭ:

- І группа доброкачественная неонатальная эпилепсия;
- ІІ группа семейные фебрильные судороги;
- III группа семейные генерализованные судороги с фебрильными судорогами плюс и АД-типом наследования;
- IV группа РЭЭ.

I группа включает 4 генетических варианта доброкачественной неонатальной эпилепсии. Заболевание манифестирует на 2-8-й день жизни в виде внезапных множественных генерализованных полиморфных судорог, длящихся 1-2 мин и не сопровождающихся симптомами поражения ЦНС и значимым снижением когнитивных функций [6, 7]. На электроэнцефалограмме (ЭЭГ) наряду с диффузной эпилептической активностью, как правило, сохраняется основной ритм. Доброкачественное течение характерно также для пяти других генетических вариантов неонатальных судорог, для которых существует специфическая терапия – 4 вариантов гипомагниемии и 1 варианта пиридоксинзависимых судорог. Внутривенное введение препаратов магния или пиридоксальфосфата полностью купирует судороги и предотвращает их повторное возникновение. При отсутствии адекватного лечения формируются гипотония и задержка психомоторного развития. Семейные инфантильные судороги с пароксизмальным хореоатетозом поддаются противосудорожной терапии или исчезают самостоятельно к 1 году, однако в возрасте от 6 до 23 лет у большинства больных возникает хореоатетоз. Генетические варианты этой группы ИГЭ (неонатальных эпилепсий) представлены в табл. 3.

Этиологическим фактором заболеваний этой группы в большинстве случаев являются мутации в генах двух субъединиц калиевых каналов и одной субъединицы натриевого канала. К возникновению гипомагниемии приводят мутации в генах, продукты которых осуществляют абсорбцию магния в кишечнике, реабсорбцию магния в почечных канальцах или являются эпидермальными факторами роста.

ІІ группа ИГЭ включает 11 генетических вариантов семейных фебрильных судорог. Примерно у 3% детей раннего возраста наблюдаются фебрильные судороги. Это самый частый тип судорог раннего детского возраста, на долю которых приходится около половины всех случаев судорожных пароксизмов [13, 19]. Заболевание манифестирует в возрасте от 3 мес до 4–5 лет при явлениях гипертермии. Клиническое течение этих вариантов моногенных судорог также доброкачественное. Психомоторное развитие детей не страдает. Симптомы заболевания, как правило, исчезают к 6 годам, однако в 10% случаев могут повторяться и в старшем возрасте. Генетические варианты этой группы заболеваний представлены в табл. 4. Из нее видно, что заболевания этой группы имеют в основном АД-тип на-

следования и только XI тип наследуется AP. Все гены заболеваний этой группы картированы, однако идентифицированы только пять из них. Продуктами двух из этих генов являются субъединицы натриевых каналов, а одного – рецептор ГАМК, выполняющий роль субстратзависимого канала. Продуктами двух других генов являются активатор путей сигнальной трансдукции клетки и фермент карбопептидаза, участвующий в биосинтезе нейрональных белков [18].

III группа ИГЭ включает 8 генетических вариантов, наследуемых по АД-типу (табл. 5).

Заболевания этой группы манифестируют с 6 мес до 6 лет с фебрильных судорог. Затем присоединяются полиморфные судороги, которые могут быть как фебрильными, так и афебрильными [20].

Все гены, ответственные за возникновение заболеваний этой группы, картированы, однако идентифицированы только пять из них. Выявлено, что продукты этих генов являются отдельными субъединицами натриевых и ГАМК-зависимых ионных каналов.

IV группа ИГЭ представлена 18 генетическими вариантами РЭЭ.

Эта группа тяжелых форм эпилепсий впервые была описана S. Ohtahara et al. в 1976 г. и составляет 1% от всех эпилепсий, возникающих в детском возрасте [18]. Серийные тонические судороги или спазмы, реже миоклонии возникают в возрасте от нескольких дней до 6 мес и являются первыми симптомами заболевания. В дальнейшем они приводят к выраженной задержке психомоторного развития, появлению очаговой неврологической симптоматики (диффузная мышечная гипотония, сменяющаяся спастикой, атаксия, дискинезия, диспраксия), а также к снижению интеллекта, которое в ряде случаев сопровождается агрессивным поведением и развитием психических расстройств. На магнитно-резонансной томограмме (МРТ) головного мозга часто выявляются атрофические процессы в мозжечке и больших полушариях, гипоплазия мозолистого тела и увеличение размеров IV желудочка. На ЭЭГ наблюдается специфический паттерн "вспышка-угнетение". В 75% случаев РЭЭ трансформируется в синдром Веста, и тогда на ЭЭГ регистрируется специфическая гипсаритмия. Все заболевания этой группы характеризуются тяжелым прогрессирующим течением с наличием судорог, резистентных к терапии антиконвульсантами [14, 20, 21]. Гены всех вариантов этой группы заболеваний локализованы, и идентифицированы их белковые продукты (табл. 6).

Из табл. 6 видно, что 8 генетических вариантов РЭЭ имеют АД-тип наследования, шесть – АР, три – Х-сцепленный рецессивный тип наследования и один – Х-сцепленный доминантный. Белковые продукты генов, мутации в которых приводят к возникновению заболеваний этой группы, выполняют различные функции. Пять из них являются ферментами, участвующими в обеспечении биохимических процессов в нейронах, шесть – субъединицами натриевых, калиевых и

Таблица 4. Генетические варианты семейных фебрильных судорог

Тип	ОМІМ	Ген	Хромосома	Насле- дование	
- 1	121210	-	8q13-q21	АД	
II	602477	-	19p	АД	
IIIA	604403	SCN1A	2q24	АД	
IIIB	613863	SCN9A	2q24	АД	
IV	604352	GPR98	5q14	АД	
V	609255	-	6q	АД	
VI	609253	_	19p	АД	
VII	611515	-	21q22	АД	
VIII	611277	GABRG2	5q31	АД	
IX	611634	-	3p24	АД	
Χ	612637	_	3q26	АД	
XI	614418	CPA6	8q13.2	AP	

Таблица 5. Генетические варианты ИГЭ с фебрильными судорогами плюс и АД-типом наследования

Тип	ОМІМ	Ген	Хромосома
- 1	604233	SCN1B (натриевый канал)	19q13
II	604403	SCN1A (натриевый канал)	2q24.3
III	611277	GABRG2	5q34
IV	609800	Неизвестен	2p24
V	613060	GABRD	1p36
VI	612279	Неизвестен	8p21
VII	613863	SCN9A (натриевый канал)	2q24.3
VIII	613828	Неизвестен	6q16.3

ГАМК-зависимых каналов, три – структурными белками нейронов коры головного мозга, два – транспортными белками и один – транскрипционным фактором [11, 12]. Функции двух белковых продуктов окончательно не выяснены.

Самым частым генетическим вариантом РЭЭ, на долю которого приходится до 30% заболеваний этой группы, является IV тип, обусловленный мутациями в гене *STXBP1*, локализованном на хромосоме 9q34.11. Белковый продукт этого гена регулирует процесс высвобождения медиатора из синаптических везикул. Клинические проявления этого типа РЭЭ характеризуются полиморфными судорожными пароксизмами, возникающими в первые 3 мес жизни (чаще в первые недели) и сопровождающимися задержкой психоэмоционального развития, спастической пара- или тетраплегией. Через 3 мес от начала заболевания формируется синдром Веста, а к 1–3 годам – синдром Леннокса–Гасто. На МРТ отмечаются истончение мозолистого тела и атрофия коры головного мозга.

Еще одним распространенным генетическим вариантом РЭЭ является VI тип, описанный впервые в 1978 г. С. Dravet и известный под названием "синдром Драве" [8]. Заболевание наследуется АД и обусловлено мутациями в

Таблица 6. Генетические варианты РЭЭ

Тип	ОМІМ гена	Ген	Продукт гена	Хромосома	Тип насле-
	ОМІМ типа	. = \ /			дования
1	300382 308350	ARX	Гомеодоменный белок – транскрипционный фактор в раннем эмбриогенезе и функционировании ЦНС	Xq21.3	X-сцепленный рецессивный
II	300203 300672	CDKL5	Циклинзависимый киназоподобный фермент сериновая протеинкиназа. Экспрессируется в нервной системе в течение синаптогенеза и развития, взаимодействует с МеСР2	Xp22.13	X-сцепленный доминантный
III	609302 609304	SLC25A22	Транспортный белок для внутренней мембраны митохондрий (транспортер глутамата)	11p15.5	AP
IV	612164 602926	STXBP1	Синтаксинсвязывающий белок, регулирует функцию синаптических везикул	9q34.11	АД
V	613477 182810	SPTAN1	α-субъединица неэритроидного спектрина. Нитевидный белок цитоскелета (структурный белок мембраны нейронов). Участвует в межрецепторном взаимодействии	9q31.1	АД
VI	607208 182389	SCN1A	α-субъединица нейронального натриевого канала I типа	2q24.3	АД
VII	602235 613720	KCNQ2	Белок калиевого вольтажзависимого канала нейронов	20q13.33	АД
VIII	300607 300429	ARHGEF9	Фермент семейства ГТФаз коллибистин (collybistin), специфичный для мозга белок. Играет роль в формировании кластера рецепторов глицина и ингибиторов ГАМК на постсинаптической мембране	Xq11.1-Xq12	X-сцепленный рецессивный
IX	300460 300088	PCDH19	Протокадерин – структурный белок семейства кальцийзависимых белков. Осуществляет межклеточную адгезию. Экспрессируется в коре и гиппокампе	Xq22.1	X-сцепленный рецессивный
X	605610 613402	PNKP	Фермент полинуклеотидкиназа-3-фосфатаза. Катализирует фосфорилирование нуклеиновых кислот	19q13.33	AP
XI	182390 613721	SCN2A	α-субъединица вольтажзависимого натриевого канала II типа	2q24.3	АД
XII	607120 613722	PLCB1	Фосфолипаза С, β ₁ -субъединица. Катализирует ключевой этап внутриклеточной сигнальной трансдукции. Экспрессируется в коре, гиппокампе и обонятельных луковицах	20p12.3	AP
XIII	600702 614558	SCN8A	α-субъединица вольтажзависимого натриевого канала VIII типа	12q.13.13	АД
XIV	608167 607596	KCNT1	Активируемый натрием калиевый канал	9q34.3	АД
XV	606494 615006	ST3GAL3	Фермент β -галактозид- α -2,3-сиалилтрансфераза-3 на мембране аппарата Гольджи, которая формирует эпитоп гликопротеинов, образующих гликосомальные комплексы для регуляции процессов распознавания и комплементации клеток	1p34.1	AP
XVI	613577 615338	TBC1D24	Координирует ГТФазные белки для цепей транспорта внутриклеточных везикул	16p13.3	AP
XVII	139311 615473	GNAO1	Гуанин-нуклеотидсвязывающий белок	16q.12.2	АД
XVIII	615463 615476	SZT2	Гомолог белка судорожного порога 2	1p34.2	AP

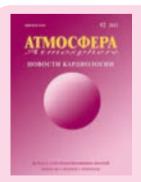
гене *SCN1A*, локализованном на хромосоме 2q24.3. Первые признаки заболевания возникают на 1-м году жизни и представляют собой миоклонии или генерализованные тонико-клонические судороги, часто провоцируемые приемом горячей ванны. В первые месяцы от манифестации заболевания на ЭЭГ эпиактивность не регистрируется. Генерализованные комплексы спайк-волна выявляются по мере прогрессирования болезни на фоне резистентности к противосудорожной терапии. На 2-м году жизни появляется очаговая неврологическая симптоматика, чаще в виде пирамидных симптомов и спиноцеребеллярной атаксии. Психоречевое развитие останавливается.

Остальные генетические варианты РЭЭ встречаются реже (некоторые из них описаны в единичных случаях). Их клинические проявления в значительной степени сходны. Однако существуют некоторые отличительные особенности фенотипа отдельных генетических вариантов РЭЭ.

При двух вариантах с X-сцепленным рецессивным типом наследования в ряде случаев клинические проявления регистрируются у женщин – гетерозиготных носительниц мутации в генах ARX и PCDH19. Так, у носительниц мутаций в гене ARX, ответственном за возникновение РЭЭ I типа, могут возникать редкие эпилептические пароксизмы, не сопровождающиеся очаговой неврологической симптоматикой и деменцией. Носительницы мутаций в гене *PCDH19*, ответственном за возникновение PЭЭ IX типа, склонны к психическим расстройствам и депрессии. У больных мужского пола эпилептические приступы при этом типе PЭЭ часто ассоциируются с лихорадкой и по мере прогрессирования заболевания сопровождаются психическими расстройствами и агрессивным поведением.

При РЭЭ II типа, наследуемой X-сцепленно доминантно, умеренно выраженные клинические симптомы чаще наблюдаются у лиц женского пола. У лиц мужского пола заболевание протекает тяжелее и часто приводит к летальному исходу в раннем возрасте. При VII типе РЭЭ судорожные приступы могут временно самостоятельно исчезать между 3-м и 4-м годом жизни, несмотря на отмечавшуюся ранее резистентность к противосудорожной терапии. Отличительной особенностью клинической картины РЭЭ VIII типа являются судорожные пароксизмы, провоцируемые тактильной стимуляцией и эмоциями. Отличительной особенностью РЭЭ XII и XV типов является наличие в клинической картине слабости аксиальных групп мышц на фоне спастического тетрапареза. В клинической картине РЭЭ XIII типа присутствуют расстройства координации, а РЭЭ XIV типа манифестирует с фокальных судорожных пароксизмов со вторичной генерализацией к 6 мес. По мере прогрессирования заболевания у больного нарушается контроль зрения и возникают миоклонические подергивания лицевой мускулатуры.

Таким образом, многие распространенные моногенные генетические варианты как доброкачественных, так и зло-качественных ИГЭ (22 из 44) обусловлены мутациями в генах, кодирующих натриевые, калиевые и ГАМК-зависимые каналы нейронов, а также ферменты и никотиновые холиновые рецепторы, функционирование которых обеспечивает прохождение нервного импульса в нейронах коры головного мозга. Известно, что терапевтический эффект большинства противоэпилептических препаратов основан на модуляции потенциалзависимых и лигандзависимых каналов нейронов коры головного мозга, усилении тормозной синаптической передачи или торможении активирующей синаптической передачи. Однако точный механизм того, как это препятствует развитию судорог, известен не для всех препаратов. Выявлено, что топирамат и фелбамат влияют


на функционирование ГАМК-зависимых каналов, а активность натриевых каналов мозга регулируется фенитоином, ламотриджином, карбамазепином, окскарбазепином и, в некоторой степени, зонисамидом в основном или частично за счет блокады высокочастотной спайковой активности [1, 14]. Однако при выборе терапевтической стратегии необходимо иметь в виду, что описанные к настоящему времени мутации обладают различным эффектом. Например, часть мутаций в гене SCN1A, кодирующем α -субъединицу натриевого канала, обусловливают усиление функции канала, что приводит к его длительному открытию, другие ослабляют функцию канала и тем самым затрудняют его открытие. Анализ функциональной значимости мутаций важен при планировании лечебных мероприятий.

Полученные результаты исследований свидетельствуют о необходимости создания новой классификации моногенных ИГЭ, в основу которой будут положены как особенности клинических проявлений и течения заболевания, так и различия в их этиологии.

Список литературы

- 1. Власов П.Н. и др. // Кач. клин. практ. 2008. № 3. С. 12.
- 2. Мухин К.Ю., Петрухин А.С. Идиопатические формы эпилепсии: систематика, диагностика, терапия. М., 2000.
- 3. Петрухин А.С. и др. Эпилептология детского возраста. М., 2000.
- 4. Темин П.А., Никанорова М.Ю. Эпилепсии и судорожные синдромы у детей: Руководство для врачей. М., 1999.
- 5. George A.L. Jr. // Arch. Neurol. 2004. V. 61. P. 473.
- 6. Bjerre I., Corelius E. // Acta Paediatr. Scand. 1968. V. 57. P. 557.
- 7. Deprez L. et al. // Neyrology. 2009. V. 72. № 3. P. 273.
- 8. Dravet C. // Vie Med. 1978. V. 8. P. 543.
- 9. Engel J. Jr. // Epilepsia. 2006. V. 47. P. 1558.
- 10. Gurnett C.A. et al. // Arch. Neurol. 2007. V. 64. P. 324.
- 11. Harkin L.A. et al. // Brain. 2007. V. 130. P. 843.
- 12. Harkin L.A. et al. // Am. J. Hum. Genet. 2002. V. 70. P. 530.
- 13. Hurst D.L. // Epilepsia. 1990. V. 31. № 4. P. 397.
- 14. Kural Z., Ozer A.F. // Epilepsy Res. Treat. 2012. V. 2012. P. 205131.
- 15. Lenzen K.P. et al. // Epilepsia. 2005. V. 46. P. 1637.
- 16. Lu Y., Wang X. // Neurol. Res. 2009. V. 31. № 3. P. 135.
- 17. Oka E. et al. // Epilepsia.1995. V. 36. № 7. P. 658.
- 18. Ohtahara S. et al. // No To Hattatsu. 1976. V. 8. P. 270.
- 19. Pal D.K. et al. // Neurology. 2003. V. 60. P. 410.
- 20. Scheffer I.E., Berkovic S.F. // Brain. 1997. V. 120. P. 479.
- 21. Singh R. et al. // Ann. Neurol. 1999. V. 45. P. 75.
- 22. Stogmann E. et al. // Neurology. 2006. V. 67. P. 2029.

Продолжаєтся подписка на научно-практический журнал

"ДТМОСФЕРА. НОВОСТИ КАРДИОЛОГИИ"

Журнал выходит 4 раза в год. Стоимость подписки на полгода по каталогу агентства "Роспечать" – 340 руб., на один номер – 170 руб. Подписной индекс 37211.

Подписку можно оформить в любом отделении связи России и СНГ. Редакционную подписку на этот и любой другой журнал издательства "Атмосфера" можно оформить на сайте http://atm-press.ru или по телефону: (495) 730-63-51