Клинико-экономический анализ оригинального левофлоксацина при туберкулезе

Белоусов Д. Ю. 1 , Гучев И. А. 2

- 1 Центр фармакоэкономических исследований, Москва
- 2 Терапевтическое отделение ФГУ «421 Военный госпиталь МВО» МО РФ, Смоленск

Туберкулез представляет сегодня одну из самых серьезных мировых проблем вследствие высокой распространенности, несмотря на интенсивные меры профилактики и лечения. Во многом очередную волну заболевания поднимает распространяющаяся ВИЧ-инфекция, при которой туберкулез является практически 100%-ной оппортунистической инфекцией. По оценкам ВОЗ ежегодно заболевает туберкулезом не менее 8 млн человек, а 2 млн человек умирает от этой болезни, он лидирует среди всех инфекционных заболеваний по параметру смертности [1]. Российская Федерация включена в число 22 стран, несущих наибольшее бремя заболевания, поскольку при относительно невысоком показателе заболеваемости (77,4 чел. на 100 тыс. населения) абсолютное число больных велико и по оценкам 2010 г. составляет 109 904 чел., а всего на диспансерном учете стоят более четверти миллиона человек (табл. 1) [2]. Наиболее тяжелая ситуация в Уральском, Сибирском и Дальневосточном федеральных округах. Именно поэтому предпринимаются неординарные меры для уменьшения прессинга заболевания, в том числе, финансовые, направленные на повышение его выявления, качества лечения и реабилитации больных туберкулезом. В федеральном бюджете на 2012 год и плановый период 2013 и 2014 годов на мероприятия по борьбе с туберкулезом определено 2,822 млрд руб., в том числе 2,22 млрд руб на лекарственные препараты [3].

Особую проблему представляет лекарственноустойчивый туберкулез, обусловленный резистентностью микобактерий туберкулеза к противотуберкулезным препаратам (ПТП). Из-за отсутствия эффекта у таких больных фаза бактериовыделения затягивается, а окружающие подвергаются высокому риску заражения, даже в случае напряженного противотуберкулезного иммунитета. По данным Центрального НИИ туберкулеза РАМН, у каждого второго пациента с впервые выявленным туберкулезом легких из мокроты выделяли резистентные микобактерии, при этом в одной трети случаев неэффективными были сразу 3 противотуберкулезных препарата [4]. При хроническом течении заболевания резистентность микобактерий определяется у 90 % больных.

По классификации ВОЗ выделяют следующие виды резистентности возбудителя туберкулеза [5]:

- монорезистентные штаммы (к одному ПТП);
- полирезистентные штаммы (к 2 и более ПТП, за исключением сочетания изониазид рифампицин);
- множественно лекарственно-резистентные (как минимум, к сочетанию изониазид рифампицин).

Формирование приобретенной резистентности к ПТП — главная причина неэффективной химиотерапии, что существенным образом сказывается на выборе режимов фармакотерапии и отражает их многообразие. Рецидивы туберкулеза легких в подавляющем большинстве случаев обусловлены резистентностью микобактерий к ПТП, нередко формирование хронических и неизлечимых форм и летальных исходов [6]. Кроме того, у таких больных имеет место более частое присоединение неспецифической патогенной бронхолегочной инфекции, что значительно утяжеляет клиническую картину, требует дополнительного назначения антибиотиков, ухудшает переносимость лечения и не гарантирует благоприятного прогноза на выздоровление, особенно у молодых и пожилых больных [7]. Поэтому рационально применять антибиотики, обладающие одновременно активностью в отношении возбудителя туберкулеза, в том числе и резистентных, и наиболее часто присоединяющихся к процессу неспецифи-

Таблица 1 Заболеваемость и контингенты больных активным туберкулезом с впервые установленным диагнозом в Российской Федерации

Субъекты Федерации	Число больных								
	всего				в том числе дети (0—17 лет) включительно				
	абсолютные числа		на 100 000 населения		абсолютные числа		на 100 000 населения		
	2009	2010	2009	2010	2009	2010	2009	2010	
Российская Федерация	117227	109904	82.6	77.4	262718	253555	185.1	178.7	
Центральный федеральный округ	22456	20576	60.5	55.4	43503	41030	117.2	110.5	
Северо-Западный федеральный округ	8500	7750	63.2	57.7	17185	16031	127.9	119.3	
Южный федеральный округ	10771	10607	78.5	77.3	29912	28644	218.1	208.9	
Северо-Кавказский федераль- ный округ	5659	5198	61.4	56.2	19123	18047	206.6	195.0	
Приволжский федеральный округ	22946	21146	76.1	70.2	49599	47829	164.7	158.9	
Уральский федеральный округ	12068	11894	98.4	96.9	27485	27305	223.8	222.4	
Сибирский федеральный округ	25247	23738	129.1	121.4	56197	55033	287.3	281.3	
Дальневосточный федеральный округ	9568	8979	148.3	139.4	19668	19588	305.4	304.1	

ческих возбудителей. К таким препаратам относятся фторхинолоны последнего поколения, эффективно дополняющие комбинации ПТП узконаправленного действия [8].

Основным достоинством фторхинолонов является иной механизм воздействия на микобактерии, чем у традиционных ПТП, что обеспечивает бактерицидный эффект, в том числе и на резистентные штаммы. Фторхинолоны ингибируют хромосомную и плазмидную ДНК-гиразу, фермента, ответственного за стабильность пространственной структуры микробной ДНК, что вызывает деспирализацию ДНК микробной клетки и ведет к гибели бактерии. Эффект распространяется как на вне-, так и внутриклеточно локализованные формы возбудителя.

Среди фторхинолонов особое место занимает левофлоксацин — левовращающий изомер офлоксацина. Левофлоксацин позиционируется как препарат выбора для второй группы препаратов, в которой и представлены фторхинолоны [9]. Важным свойством левофлоксацина является в два раза большая активность в отношении микобактерий и лучшая переносимость в сравнении с офлоксацином [10]. Кроме

того, большой объем распределения в организме, высокий уровень пенетрации в различные ткани (легочную, мышечную, печеночную и др.) делает его одним из препаратов эффективного выбора при туберкулезе, в том числе и при параканкрозной пневмонии. Особое внимание в связи с длительным лечением мультирезистентного туберкулеза уделяется вопросам переносимости лекарственной терапии. В сравнении с офлоксацином, левофлоксацин значительно реже оказывает негативное действие на систему органов пищеварения, мышцы и ЦНС, в сравнении с моксифлоксацином — на ЦНС и кожу [11]. Эффективность левофлоксацина при мультирезистентом туберкулезе, оцененная более чем за 6 летний период постоянного наблюдения у больных с тяжелым распадом легочной ткани, составляет не менее 78 % [12].

В отечественной практике левофлоксацин при множественно устойчивом туберкулезе в сравнении с другими режимами химиотерапии был изучен в Центральном НИИ туберкулеза РАМН [13]. В одной из групп больных (группа 1, n = 40 чел.) активным легочным туберкулезом с бактериовыделением в качестве средств для лечения лекар-

ственно-устойчивого варианта болезни применялись левофлоксацин (Таваник, Санофи Винтроп Индустрия, Франция) в дозе 500 мг в сутки, амикацин из расчета 16 мг/кг/сутки, пиразинамид 25 мг/кг/сутки, этамбутол — 20 мг/кг/сутки, протионамид — 10 мг/кг на протяжении 6 месяцев. В группе 2 (40 чел.), сопоставимой с группой 1 по демографическим, клиническим характеристикам больные вместо левофлоксацина и амикацина получали капреомицин из расчета 16 мг/кг и циклосерин по 10 мг/кг/сутки. Остальные компоненты лечения были такими же, как в группе 1, одинаковыми были также их дозировки. Использованные амикацин, капреомицин, циклосерин, пиразинамид, этамбутол и протионамид были различных производителей.

Эффективность лечения проанализирована по прекращению бактериовыделения методом микроскопии и посева мокроты на питательные среды через 3 и 6 мес., а также по динамике инфильтративных и деструктивных изменений в легких через 6 мес. интенсивной фазы химиотерапии. К концу шестого месяца химиотерапии закрытие каверн в легких было у большего количества больных в группе 1, чем в группе 2 (у 17 из 40 больных и у 9 из 40 больных соответственно, р<0,05). Прекращение бактериовыделения было отмечено у 95 % больных группы 1, где применялся левофлоксацин, в сравнении с 77,5% больных из группы 2, прекративших выделять микобактерии через 6 мес. (табл. 2). Обращает на себя внимание, что уже через 3 мес. в группе 1 было значительно большее количество больных без бактериовыделения, чем в группе 2 (в 2 раза). Средняя продолжительность госпитализации до получения положительного результата в группе 1 (с левофлоксацином) была 3,7±1,2 мес., в группе 2—4,6±1,5 мес. Немаловажно, что у больных группы 1 при лечении в динамике сбора мокроты и определения чувствительности микобактерий формирования вторичной лекарственной устойчивости к левофлоксацину не выявлено. Снижение абсолютного риска (ARR) сохранения бактериовыделения через 6 мес. при применении режима 1 (с левофлоксацином) по сравнению с режимом 2 составило 17,5 %, а относительного (RRR) — 18,4 %. Те же параметры, оцененные на более раннем этапе — через 3 мес. терапии — показывают AAR 37,5 %, а RRR 51,7 %. Отношение шансов (OR) при 95 %-ном уровне достоверности составило 0,18 (доверительный интервал 0,03—0,90), что подтверждает существенно большую эффективность режима 1 перед режимом 2 через 6 мес.

Существенных различий в частоте нежелательных лекарственных реакций (клинически и лабораторно) по группам не выявлено — в группе 1 такие реакции были у 22 чел., в группе 2 — у 21 чел. Основные нежелательные эффекты — головные боли, нарушения сна и аппетита, тошнота, боли в животе, повышение уровня трансаминаз — с примерно равной частотой встречались как в той, так и в другой группе.

Сравнительный фармакоэкономический анализ упрощен за счет того, что расходы на общие для двух групп препараты — пиразинамид, протионамид и этамбутол — могут не приниматься во внимание. Поэтому оценка произведена для комбинации левофлоксацин + амикацин для группы 1 в сравнении с комбинацией капреомицин + циклосерин для группы 2 (табл. 3).

Для расчетов стоимости Таваника взята максимальная цена упаковки таблеток, покрытых пленочной оболочкой, по 500 мг № 5 в аптечной сети с использованием калькулятора на ЖНВЛП с учетом всех надбавок по г. Москва [14]. Поскольку амикацин, капреомицин и циклосерин производятся различными фармацевтическими компаниями, произведено определение средневзвешенной цены за упаковку также с использованием этого калькулятора. Далее был произведен расчет стоимости дня лечения по группам, с добавлением средней стоимости госпитализации из расчета 1 360,8 руб. за койко-день [15]. В результате вычислений ока-

Группа	Количество больных (%)	Сроки прекращения бактериовыделения (месяцы от начала химиотерапии)		Количество больных, у которых сохранено	
		3	6	бактериовыделение через 6 мес. (%)	
Группа 1	40 (100%)	29 (72,5%)*	9 (22,5 %)	2 (5,0 %)*	
Группа 2	40 (100%)	14 (35,0 %)	17 (42,5%)	9 (22,5 %)	

Примечание. * p<0,05 между группами 1 и 2

Таблица 3 Сравнительный фармакоэкономический анализ различных режимов химиотерапии лекарственно-устойчивого туберкулеза легких

Параметр	Режим 1 (левофлоксацин + амикацин)	Режим 2 (капреомицин + циклосерин)		
Дозировки (в сутки)	Левофлоксацин — 500 мг Амикацин — 16 мг/кг (1 г в сутки)	Капреомицин — 16 мг/кг Циклосерин — 10 мг/кг		
Стоимость единицы (руб.)	Таваник 500 мг № 5—727,72 Амикацин 1,0—89,2	Капреомицин 1,0—712 Циклосерин 250 мг № 100—5 940		
Стоимость лечения (руб./сутки)	Таваник — 145,54 Амикацин — 89,2 Всего — 234,7	Капреомицин — 712 Циклосерин — 237,6 Всего — 949,6		
Разница в стоимости (руб./сутки)		+ 714,9		
Стоимость лечения в течение 6 мес. (тыс. руб./больной)	21,12	85,46		
Средняя длительность госпитализации (дней/больной)	111	138		
Стоимость госпитализации (тыс. руб./больной)	153,2	190,5		
Стоимость лечения и госпитализации (тыс. руб./больной)	174,32	275,96		
Стоимость-эффект (тыс. руб.)	183,49	356,07		
Стоимость эффективного лечения в течение 6 мес. (тыс. руб. на 100 больных)*	2006	6623		
Стоимость неэффективного лечения в течение 6 мес. (тыс. руб. на 100 больных)*	105,6	1922		
Эффективность затрат (коэффициент)*	18,9	3,4		
Параметр NNT	1	5,7		

Примечание. * — без затрат на госпитализацию

залось, что режим 2 стоит дороже режима 1 почти в 1,6 раза. К тому же режим 1 с использованием левофлоксацина достоверно эффективнее режима 2, поэтому произведен подсчет показателя «стоимость/эффективность» по формуле:

CER = прямые затраты/эффективность, где

CER — показатель «стоимость/эффективность» (cost-effective ratio);

прямые затраты — стоимость лекарственных препаратов на 6 мес. на 100 больных;

эффективность — количество больных (в %), у которых прекратилось бактериовыделение после 6 мес. фармакотерапии.

Показатель CER лучше при использовании режима с левофлоксацином, чем режима без него, почти

вдвое. Таким образом, большей эффективности при лекарственно-устойчивом туберкулезе легких можно достичь меньшими затратами, используя левофлоксацин в сочетании с амикацином, в сравнении с режимом капреомицин + циклосерин. Эффективность затрат, определенная как отношение стоимости фармакотерапии у тех, у кого бактериовыделение закончилось через 6 мес., к стоимости таковой у тех, у кого подобный эффект отсутствовал, выше при режиме 1. Как показывает анализ, оба режима являются экономически эффективными с точки зрения вложений в здоровье. Тем не менее, вследствие более высокой эффективности режима с левофлоксацином, экономическая отдача при использовании режима 1 выше, чем режима 2.

Определение параметра NNT (Number Needed to Treat), интерпретируемого как количество больных, которое надо пролечить режимом 2, чтобы получить

такой же результат по прекращению бактериовыделения у одного больного на режиме 1, произведено по формуле:

NNT = 1/AAR, где

AAR — уменьшение абсолютного риска при сравнении режима 1 с режимом 2

Параметр NNT для режима 2 через 6 мес. в 5,7 раз выше, чем для режима 1, а это означает, что расчетная эффективность режима с левофлоксацином значительно выше, чем режима без него, что влияет на прогнозные экономические значения, разница в которых становится еще более заметной в пользу режима с левофлоксацином.

Еще одним немаловажным аргументом в пользу включения левофлоксацина в схемы лечения больных лекарственно-устойчивым туберкулезом легких следует считать обнаружение у таких больных неспецифической бронхо-легочной инфекции почти в трети случаев, особенно у больных с ВИЧ [16]. Большинство таких неспецифических патогенов чувствительно к левофлоксацину, что делает возможным эффективное лечение, как туберкулеза, так и сопровождающих его неспецифических инфекционных процессов. Опасения, что широкое применение левофлоксацина при внебольничной пневмонии в эпидемически неблагоприятных по туберкулезу очагах может привести к формированию устойчивости микобактерий к этому фторхинолону, не находят своего подтверждения [17].

Фторхинолоны, в первую очередь левофлоксацин, также могут использоваться в индивидуальных режимах химиотерапии у больных туберкулезом легких с сопутствующими заболеваниями, при которых некоторые основные ПТП не показаны. Так, например, у больных с патологией печени в остром периоде заболевания не показан рифампицин, тогда как фторхинолоны не имеют противопоказаний. Это касается также больных с ВИЧ-инфекцией, сахарным диабетом, сопутствующими заболеваниями нервной и сердечно-сосудистой системы, больных с наркоманией и алкоголизмом, а также больных пожилого и старческого возраста, у которых применение изониазида вызывает большое число нежелательных реакций [18]. В современных эпидемиологических условиях при значительном росте первичной лекарственной устойчивости возбудителя туберкулеза и утяжелении клинических форм впервые выявленного туберкулеза легких в Российской Федерации режим химиотерапии с фторхинолонами (II6 режим согласно Приказа МЗ РФ № 109 от 21 марта 2003 г.) должен являться основным стандартным режимом у впервые выявленных и больных с рецидивом заболевания, до получения данных микробиологического исследования лекарственной чувствительности [19]. Основная роль в эффективности Пб режима по Приказу МЗ отводится именно фторхинолонам и их синергидным действием с другими ПТП, в то время как режим I по Приказу МЗ, при котором предусматривается применение только старых ПТП, постепенно теряет свою эффективность в нашей стране, даже у больных с чувствительными формами микобактерий. Эксперты предупреждают, что применение режима I (без фторхинолонов) может нанести урон и так непростой эпидемиологической ситуации и привести к распространению неизлечимых форм туберкулеза [20].

Внутривенная форма левофлоксацина используется в схемах ступенчатой (вначале парентерально, затем — внутрь) антибактериальной терапии ослабленных больных в комплексных схемах лечения туберкулеза, в том числе и лекарственно-устойчивого

Заключение

Левофлоксацин (Таваник) является важным компонентом комплексного лечения туберкулеза легких, в том числе лекарственно-устойчивого, поскольку обеспечивает подавление бактериовыделения у большинства больных.

Применение левофлоксацина совместно с амикацином в комплексных схемах терапии лекарственно-устойчивого туберкулеза легких имеет клинические и экономические преимущества перед капреомицином и циклосерином.

Включение левофлоксацина в современные схемы лечения туберкулеза дает отчетливый экономический эффект по сравнению с традиционными препаратами, поскольку обеспечение более надежной эрадикации, а, следовательно, прерывание цепочки передачи инфекции, потенциально дает существенную социально-экономическую отдачу.

Ограничения

Клинико-экономическая экспертиза проведена для оригинального левофлоксацина (Таваник) и не может быть автоматически перенесена на его воспроизведенные копии.

Литература

- 1. Перельман М. И. Туберкулез в Российской Федерации. Лекарственный менеджмент во фтизиатрии. М.: РЦ Фармединфо. 2009. 240 с.
- 2. Социально значимые заболевания населения России в 2010 году (статистические материалы) МЗ и СР РФ, 2011 http://ru58.fmbaros. ru/2504/news/item/5018 по состоянию на 21.02.2012)
- 3. http://www.minzdravsoc.ru/health/prevention/37 по состоянию на 21.02.2012
- 4. *Мишин В.Ю.* Лекарственно-устойчивый туберкулез легких//Мед вестник. 2003. 15. 10.
- 5. World Health Organization. Multidrug and extensively drug-resistant tuberculosis: 2010 global report on surveillance and response. Geneva: World Health Organization, 2010.
- 6. Lee J., Lim H. J., Cho Y. J. et al. Recurrence after successful treatment among patients with multidrug-resistant tuberculosis//Int J Tuberc Lung Dis. 2011; 15 (10):1331—1333.
- 7. Schaaf H. S., Collins A., Bekker A., Davies P. D. Tuberculosis at extremes of age//Respirology. 2010;15 (5):747—763.
- 8. Pranger A. D., Alffenaar J. W., Aarnoutse R. E. Fluoroquinolones, the cornerstone of treatment of drug-resistant tuberculosis: a pharmacokinetic and pharmacodynamic approach//Curr Pharm Des. 2011;17 (27):2900—2930.
- 9. Caminero J. A., Sotgiu G., Zumla A., Migliori G. B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis//Lancet Infect Dis. 2010;10 (9):621—629.
- 10. Levofloxacin//Tuberculosis. 2008;88 (2) 119—121.
- $11. \ \textit{Tom\'e A. M., Filipe A. } Quinolones: review of psychiatric and neurological adverse reactions \textit{//} Drug Saf. -2011; 34 (6): 465-488.$
- 12. Lee J., Lee C.H., Kim D.K. et al. Retrospective comparison of levofloxacin and moxifloxacin on multidrug-resistant tuberculosis treatment outcomes//Korean J Intern Med. 2011;26 (2):153—159.
- 13. Мишин В.Ю., Пунга В.В., Белоусов Ю.Б., Белоусов Д.Ю. Клинико-экономическая оценка лечения лекарственно-устойчивого туберкулеза легких//Качественная клиническая практика. 2004; 3:39—52.
- 14. http://www.pharmvestnik.ru/calculator.html по состоянию на 29 февраля 2012 г.
- 15. Министерство Здравоохранения и социального развития Российской Федерации. Постановление Правительства № 782 от 04.10.2010. Программа государственных гарантий оказания гражданам Российской Федерации бесплатной медицинской помощи на 2011 г.
- 16. Pérez C., García P., Calvo M. et al. Etiology of pneumonia in chilean HIV-infected adult patients//Rev Chilena Infectol. 2011;28 (4):343—348.
- 17. Shen G. H., Tsao T. C., Kao S. J. et al. Does empirical treatment of community-acquired pneumonia with fluoroquinolones delay tuberculosis treatment and result in fluoroquinolone resistance in Mycobacterium tuberculosis? Controversies and solutions.//Int J Antimicrob Agents. 2012;39 (3):201—205.
- 18. Мишин В.Ю. Медикаментозные осложнения комбинированной химиотерапии туберкулеза легких. М.: МИА, 2007, 248 с.
- 19. *Мишин В. Ю.* Оптимизация лечения впервые выявленных больных туберкулезом легких на основе принципов доказательной медицины//Consilium Medicum. 2008;10 (3): 20—25.
- 20. *Мишин В.Ю., Мякишева Т.В., Мишина А.В.* Эффективность различных методов введения противотуберкулезных препаратов во Пб режиме химиотерапии у впервые выявленных больных деструктивным туберкулезом легких с позиций медицины доказательств//Практическая медицина. 2011;51:63—67.