- 5. Кобылянский В.И. Методы исследования мукоцилиарной системы: возможности и перспективы // Тер. архив. 2001. №3. С.73–76.
- 6. Одиреев А.Н., Колосов В.П., Луценко М.Т. Новый подход к диагностике мукоцилиарной недостаточности у больных бронхиальной астмой // Бюл. Сиб. отд-ния РАМН. 2009. №2 (136). С.75–80.
- 7. Чикина С.Ю. Патология мукоцилиарного клиренса при различных бронхолегочных заболеваниях // Мукоактивная терапия / под ред. А.Г.Чучалина. М.: Атмосфера, 2006. С.31–42.
- 8. Чучалин А.Г. Бронхоэктазы: клинические проявления и диагностические программы // РМЖ. 2005. Т.13. №4. С.177–183.
- 9. Management of congenital tracheomalacia: a single institution experience / Anton-Pacheco J.L. [et al.] // Chir. Pediatr. 2006. Vol.19. P.55–60.
 - 10. Prenatal period to adolescence: the variable pres-

- entations of congenital cystic adenomatoid malformation / Aslan A.T. [et al.] // Pediatr. Int. 2006. Vol.48. P.626–630
- 11. Bhandari A. Congenital malformations of the lung and the airway // Pediatric pulmonology / ed. H.Panitch. Mosby, 2005. P.35–59.
- 12. Kartagener M., Mulli K. Familiares Vorkommen von brouchiktasien // Schweiz. Z. Tuberk. 1956. Vol.13. P.221–225.
- 13. Meeks M., Bush A. Primary ciliary dyskinesia // Pediat. Pulm. 2000. Vol.29. P.307–316.
- 14. Homozygosity mapping of a gene locus for primary ciliary dyskinesia of the heavy dynein chain DNAH5 as a candidate gene / Omran H. [et al.] // Am. J. Respir. Cell Mol. Biol. 2000. Vol.23. P.696–702.
- 15. Zach M.S., Eber E. Adult outcome of congenital lower respiratory tract malformations // Arch. Dis. Child. 2002. Vol.87. P.500–505.

Поступила 10.12.2009

Анатолий Васильевич Леншин, руководитель лаборатории, 675000, г. Благовещенск, ул. Калинина, 22; Anatoliy V. Lenshin, 22 Kalinin Str., Blagoveschensk, 675000; E-mail: cfpd@amur.ru

УДК 612-083[616.233-002.2:612.225]

А.Г.Приходько, Г.А.Макарова

ИММУНОЛОГИЧЕСКИЕ МЕХАНИЗМЫ В ИНИЦИАЦИИ И МОДУЛИРОВАНИИ ХОЛОДОВОЙ РЕАКТИВНОСТИ ДЫХАТЕЛЬНЫХ ПУТЕЙ

Дальневосточный научный центр физиологии и патологии дыхания Сибирского отделения РАМН, Благовещенск

РЕЗЮМЕ

С целью изучения иммунологических механизмов холодовой гиперреактивности дыхательных путей исследовались общий IgE, интерлейкины IL-1, IL-4, IL-8, интерферон у перед и после 3-минутной изокапнической гипервентиляции холодным (-20%) воздухом у 79 больных хроническими болезнями органов дыхания. Полученные данные свидетельствуют, что у части больных с выявленной холодовой гиперреактивностью дыхательных путей существует IgE-опосредованный механизм формирования гиперреактивности дыхательных путей.

Ключевые слова: холодовая гиперреактивность дыхательных путей, иммунологические механизмы, цитокины.

SUMMARY

A.G.Prikhodko, G.A.Makarova
IMMUNOLOGIC MECHANISMS
IN INITIATION AND MODELLING
OF AIRWAY COLD RESPONSIVENESS

To study immunologic mechanisms of cold airway hyperresponsiveness, whole IgE, interleukins IL-1, IL-4, IL-8, interferon γ before and after 3-minute isocapnic hyperventilation by cold air (-20%) in 79 patients with chronic respiratory diseases have been studied. The obtained data suggested that some patients with cold airway hyperresponsiveness have IgE-mediated mechanism of airway hyperresponsiveness forming.

Key words: cold airway hyperresponsiveness, immunologic mechanisms, cytokine.

Патогенетически значимой представляется взаимосвязь измененной реактивности и резистентности дыхательной системы к экзогенным влияниям. В этом аспекте важным звеном патогенеза хронических болезней органов дыхания (БОД) следует предположить формирование особого иммунометаболического профиля, характеризующегося оксидативным стрессом, дисбалансом цитокинов как основных тканевых регуляторов хронического воспалительного процесса, в частности IL-4, IL-5, IL-13, а также IgE-зависимыми реакциями гладкомышечных клеток лыхательных путей. Представление об участии цитокинов и иммуноглобулина Е в развитии у больных холодовой гиперреактивности дыхательных путей до настоящего времени остается несформированным. В то же время клиническая практика требует выделения в популяции больных хроническими БОД фенотипов, связанных с доминирующими патогенетическими механизмами развития данного синдрома, что чрезвычайно важно для поиска адекватных методов коррекции.

Целью работы служило определение роли цитокинов и иммуноглобулина Е в развитии бронхоспазма, вызванного холодным воздухом.

Материалы и методы исследования

Нами проведено обследование 82 больных бронхиальной астмой (БА) легкой степени тяжести, хроническим необструктивным бронхитом и хронической обструктивной болезнью легких (ХОБЛ) 1-й стадии, средний возраст которых составил $36,5\pm1,51$ лет, рост $169,4\pm1,27$ см, вес $75,1\pm0,98$ кг. Больные находились в фазе нестойкой ремиссии и не имели выраженных обструктивных нарушений. Критерием отбора пациентов служило отсутствие общих противопоказаний для проведения функциональных исследований, полное их согласие и осознание цели обследования.

С целью изучения предполагаемых механизмов, формирующих холодовую гиперреактивность дыха-

тельных путей, исследовались сывороточный IgE, интерлейкины IL-1, IL-4, IL-8, интерферон у (IFN-у) до и после 3-минутной изокапнической гипервентиляции холодным (-20%) воздухом (ИГХВ), в режиме 60% должной максимальной вентиляции легких. Вентиляционная функция легких оценивалась по данным кривой "поток-объем" форсированного выдоха перед началом холодовой провокации и после нее на 1 и 5 минутах восстановительного периода. Фенотипирование лимфоцитов осуществляли иммунофлюоресцентным методом с использованием моноклональных антител (ООО «Сорбент». Москва). Уровень общего IgE и цитокинов в сыворотке крови определялся при помощи иммуноферментного анализа с использованием наборов реактивов «ИЛ-ИФА-БЕСТ», «Вектор-Бест» (Новосибирск).

Статистический анализ полученного материала проводился на основе стандартных методов вариационной статистики с оценкой достоверности различий по критерию Стьюдента (t).

Результаты исследования и их обсуждение

Анализ иммунологического статуса и уровня цитокинов в крови позволил нам сделать определенные выводы в отношении взаимосвязи последних с реактивностью дыхательных путей. В первую очередь патофизиологические изменения затрагивают клеточное звено иммунного ответа со снижением Т-хелперной активности лимфоцитов. Это находило свое отражение в профиле цитокинов, изученных нами в плазме крови больных БОД (табл.). Из всей исследованной группы существенное увеличение уровня секреции имели только два цитокина, ответственные за формирование Th1/Th2-воспалительной реакции. Нами найдено увеличение количества IL-4 и IFN-γ в сыворотке крови и у больных XБ, и у больных БА, что указывало на особенности текущего воспаления. В свою очередь, повышенные цифры IL-4 в сыворотке крови и уменьшение соотношения IFN-γ/IL-4, в большей степени у больных БА, под-

Таблица Основные показатели клеточного, гуморального иммунитета и цитокинового профиля больных БОД

Показатель	ХНБ	ХОБЛ	БА
Лимфоциты, %	31,6±1,28	33,1±2,31	34,8±1,35
CD3+,%	60,7±4,48	48,4±3,08	55,7±3,09
CD4+,%	47,0±3,06	36,7±2,14; p<0,05	45,8±2,81; p ₁ <0,05
CD8+,%	14,4±4,36	12,2±3,27	17,8±2,08
CD20+,%	13,2±0,81	15,0±0,82	14,2±0,91
CD4+/CD8+	3,3±0,20	3,1±0,18	2,5±0,21; p<0,05
IgA, г/л	3,2±0,34	3,0±0,32	2,7±0,22
IgM, г/л	1,7±0,17	1,5±0,17	2,3±0,49
IgG, г/л	16,4±0,82	16,5±1,08	15,4±0,84
IgE, ME/мл	71,0±26,8	74,3±28,3	290,5±50,6
			p<0,01; p ₁ <0,01
IL-1ra, пкг/мл	302,6±29,4	289,9±23,7	301,3±24,1
IL-4, пкг/мл	39,1±8,8	40,99±9,5	55,0±13,1
IL-8, пкг/мл	9,1±0,9	9,1±1,5	10,8±1,4
IFN-γ, пкг/мл	75,6±12,8	88,0±21,1	85,0±12,4

Примечание: p – уровень значимости различий в сравнении с больными XHБ, p_1 – уровень значимости различий в сравнении с больными XOБЛ.

тверждали преимущественную функциональную активность Th2-лимфоцитов, чему соответствовало увеличенное содержание общего IgE в данной группе больных.

Известно, что IL-4 не только способствует дифференцировке Th2-лимфоцитов и ингибирует развитие Th1-лимфоцитов, но и может увеличивать цитолитическую активность CD^{8+} цитотоксических Тлимфоцитов. Он оказывает влияние на моноциты и макрофаги, усиливает выброс TNF- α , IL-1, IL-8, IFN- γ , рост тучной клетки и тем самым, вместе с другими цитокинами, участвует в неаллергическом воспалении, что частично объясняет увеличение его у больных ХОБЛ.

Проведенный нами контроль уровня цитокинов в крови после холодовой бронхопровокации выявил высокую вариабельность индивидуальных значений. Несмотря на это, изменения в целом носили однонаправленный характер. Во всех группах отмечалась тенденция к увеличению IL-1га после воздействия холодного воздуха, его прирост составил у больных БА — 12,6±11,3; ХНБ — 16,0±7,9; ХОБЛ — 27,0±14,8 пкг/мл, что возможно могло блокировать пролиферацию Th2-лимфоцитов.

Несмотря на то, что IL-8, являясь мощным хемоатрактантом нейтрофилов [5], участвует в воспалительной реакции, мы нашли минимальные различия показателей до и после пробы у больных БА и ХНБ – $0,4\pm1,28$; $0,02\pm0,49$ пкг/мл, соответственно, тогда как по мере формирования обструкции при ХОБЛ увеличение носило более выраженный характер 1,2±0,74; пкг/мл. Ранее нами было показано, что холод может действовать повреждающе на дыхательные пути [3], высушивая слизистую бронхов, приводя к гиперосмолярности и тем самым нарушая эпителиальный слой. С другой стороны с утяжелением течения заболевания у больных ХОБЛ падение ОФВ1 после ингаляции холодного воздуха становилось зависимым от уровня IL-8 в крови (r=-0,64; p<0,05), что подчеркивало воспалительный характер изменений.

Колебания в концентрации IL-4 у больных XHБ и ХОБЛ были несущественными, в среднем по группе падение составляло 1,2±6,16 пкг/мл и 3,2±3,73 пкг/мл, соответственно. Более значимое снижение имели больные БА (12,6 \pm 13,57 пкг/мл), которое за счет индивидуальной вариабельности не достигало достоверных различий. Полученные значения нас удивили, поскольку у астматиков мы ожидали найти увеличение уровня IL-4, как было представлено в работе M.S.Davis et al. [6], предполагая прямую зависимость между увеличением его продукции в тучных клетках И последующей активацией лимфоцитов. По всей видимости, IL-4 не является основным посредником в формировании холодовой гиперреактивности дыхательных путей у больных БОД. К таким же выводам пришли В.А.Казначеев и др. [1], исследовав полиморфизм гена интерлейкина-4 у больных с атопической БА и не найдя связи между уровнем сывороточного IL-4 и общего IgE. Возможно, его участие носит опосредованный характер, в большей степени влияя на нитроксидергические реакции. Существуют данные, что IL-4 совместно с IL-10 повышает активность аргиназ и, тем самым,

снижает содержание L-аргинина, участвующего в синтезе NO [2].

Интерес представляет динамика IFN-у после холодовой провокации. Так как его продукция в основном ограничена субпопуляцией Т-лимфоцитов (СД⁴⁺ и CD^{8+}), то, скорее всего, он мог принимать непосредственное участие в формировании реакции к холодному воздуху. Было найдено снижение уровня IFN-γ в крови после пробы ИГХВ у больных ХОБЛ (12,9±12,14; пкг/мл), и более существенное у больных БА (19,1±7,83 p<0,05; пкг/мл). Установлено, что IFN-у оказывает общирное иммунорегуляторное влияние на различные клетки, не только подавляя активность Th2-лимфоцитов, но обладая провоспалительным действием, он способен стимулировать эпителиоциты дыхательных путей в выбросе цитокинов, специальных молекул адгезии, усилить выход TNF-а из альвеолярных макрофагов, вызванный запуском IgE реакции или эндотоксином, увеличить продукцию IL-1, PAF и H₂O₂ из моноцитов, оказываясь посредником цитотоксических реакций при ингибировании аллергического воспаления. Имеются сведения, что IFN-у усиливает выделение гистамина. Существуют данные, что назначение экзогенного IFN-у предотвращает эозинофильное воспаление и гиперреактивность дыхательных путей.

Более наглядные результаты нами получены при изучении больных с холодовой гиперреактивностью дыхательных путей и высоким содержанием общего IgE в сыворотке крови. Исследование исходного уровня IgE и сопоставление его с реакцией к холодному воздуху показало, что повышение общего IgE в крови утяжеляет последнюю (рис.).

Учитывая то, что уровень IL-4 в сыворотке не изменялся после холодовой провокации, одним из возможных механизмов увеличения активности IgE служило угнетение продукции IFN-у CD8+ лимфоцитами. Было обнаружено, что у лиц с повышенным содержанием IgE исходные значения ОФВ₁ имели тесную связь с уровнем IFN- γ (r=0,62; p<0,05), измеренным перед провокацией. В этой же группе отмечалось достоверное снижение IFN-у - 23,31±9,31 пкг/мл (p<0,05) после ИГХВ. Полученное нами уравнение регрессии (1) определило меру участия его в IgE-зависимых механизмах формирования гиперреактивности дыхательных путей, в основе которой лежит классическая реакция связывания IgE с высокоаффинными рецепторами к Fc-фрагменту IgE на поверхности тучных клеток в тканях гладких мышц или на циркулирующих базофилах крови. Перекрестное связывание рецепторов комплексами «антиген-IgE» вызывает активацию тучных клеток с высвобождением медиаторов воспаления, участвующих не только в формировании аллергического ответа, но и реактивности дыхательных путей. Поскольку тучные клетки и базофилы сами являются богатым источником цитокинов, то они могут усиливать IgEзависимые реакции, не участвуя в его синтезе [4].

 $\Delta O\Phi B_1$ =-12,11-0,041 · IFN- γ -0,014 · IgE, (1) где $\Delta O\Phi B_1$ — максимальное изменение $O\Phi B_1$ после ИГХВ, выраженное в процентах от исходной величины вне зависимости от времени наступления реакции, уровнем IFN- γ , полученный после провокации,

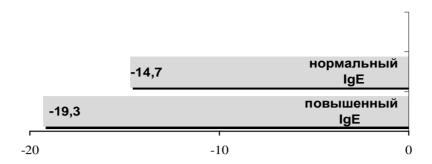


Рис. Влияние повышенного IgE на холодовую реактивность дыхательных путей.

исходный уровень IgE у больных с холодовой гиперреактивностью дыхательных путей. Значимость регрессии – 97,3%.

Кроме того, исходно повышенное содержание общего IgE в крови может потенцировать механизмы бронхоспастической реакции вне зависимости от активности Т-лимфоцитов. В классическом варианте переключение на синтез IgE опосредовано IL-4, IL-13 и молекулой CD40, относящейся к суперсемейству рецепторов TNF-а, который экспрессируется на всех В-лимфоцитах. Другой путь переключения классов антител на синтез IgE может происходить путем взаимодействия с кортикостероидным гормоном. Гидрокортизон запускает продукцию IgE В-лимфоцитами через экспрессию белка CD40L, количество которого зависит от титра в сыворотке крови кортизола. С повышением уровня кортизола при воздействии стрессовых факторов происходит мгновенная индукция экспрессии CD40L глюкокортикоидами и запускается механизм синтеза IgE. Фактор активации Влимфоцитов и лиганд, запускающий пролиферацию, также способны участвовать в синтезе IgE. Они продуцируются преимущественно моноцитами и дендритными клетками под влиянием IFN-а, IFN-у, липополисахаридами, CD40L [7].

Следовательно, один из механизмов, принимающих участие в формировании гиперреактивности дыхательных путей к холодному воздуху, связан с IgE-зависимыми иммунологическими реакциями, которые в большей степени присущи больным БА. Об этом свидетельствует повышенное содержание исходного уровня IgE, полученная нами прямая связь между исходным содержанием кортизола в крови и последующей реакцией к холодному воздуху (r=0,52; p<0,05), а также особенности изменения цитокинового профиля после пробы

ИГХВ у этих больных. Безусловно, найденные нами зависимости не только важны с точки зрения выявления основных механизмов, участвующих в формировании гиперреактивности дыхательных путей, но и лечения данной группы пациентов, подбор медикаментозной терапии которым должен проводиться с учетом выявленных закономерностей.

ЛИТЕРАТУРА

- 1. Казначеев В.А., Гервазиев Ю.В., Гервазиева В.Б. Частота встречаемости полиморфизма (С-33Т) в промоторе гена интерлейкина-4 у больных атопической бронхиальной астмой в российской популяции // Астма. 2005. Т.6, №1–2. С.18–22.
- 2. Покровский В.И., Виноградов Н.А. Оксид азота, его физиологические и патофизиологические свойства // Тер. архив. 2005. №1. С.82–87.
- 3. Приходько А.Г., Перельман Ю.М. Холодовая реактивность дыхательных путей у больных хроническим бронхитом // Пульмонология. 2003. №3. С.24–28.
- 4. Цибулкина В.Н. Бронхиальная астма: распространенность, механизмы развития, факторы, определяющие тяжесть заболевания, общие принципы специфической и неспецифической терапии // Казанский мед.ж. 2005. Т.86, №5. С.353–360.
- 5. Chung K.F., Barnes P.J. Cytokines in asthma // Thorax. 1999. Vol.54. P.825–857.
- 6. Cold weather exercise and airway cytokine expression / M.S. Davis [et al.] // J. Appl. Physiol. 2005. Vol.98. P.2132–2136.
- 7. Gena R.S. Jabata H.H., Brodeur S.R. Регуляция механизма рекомбинации переключения на синтез иммуноглобулина Е // Аллергология и иммунология. 2005. Т.6, №1. С.23–37.

Поступила 30.11.2009

Анна Григорьевна Приходько, ведущий научный сотрудник, 675000, г. Благовещенск, ул. Калинина, 22; Anna G.Prikhodko, 22 Kalinin Str., Blagoveschensk, 675000; E-mail: cfpd@amur.ru