- 6. Смулевич А.Б. Депрессии в общей медицине: руководство для врачей. М., 2001.
- 7. GINA. Global strategy for asthma management and prevention. 2008. Режим доступа: http://www.ginasthma.com (дата обращения 26.05.2009).
- 8. Juniper E.F., Buist A.S., Cox F.M. et al. Validation of a standardized version of the Asthma Quality of Life Questionnaire // Chest. 1999. Vol. 115, №5. P. 1265-1270.
- 9. Lavoie K.L., Bacon S.L., Barone S. et al. What is worse for asthma control and quality of life: depressive disorders, anxiety disorders, or both? Chest. 2006. Vol. 130, №4. P. 1039-1047.
- 10. Singer N.K., Ruchinskas R.A., Riley K.C. The psychological impact of endstage lung disease. Chest. 2001. Vol. 120. P. 1246-1252.

- 11. Ware J.E. SF-36 Health Survey. Manual and interpretation guide. Second printing. Boston: The Health Institute, New England Medical Center, 1997.
- 12. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale // Acta Psychiatr. Scand. 1983. Vol. 67, N_06 . P. 361-370.

Координаты для связи с автором: Перельман Наталья Львовна — младший научный сотрудник лаборатории профилактики неспецифических заболеваний легких Учреждения Российской академии медицинских наук Дальневосточного научного центра физиологии и патологии дыхания Сибирского отделения РАМН, тел.: 8-(4162)-36-26-54, e-mail: jperelman@mail.ru.

УДК 616.248 - 092: 616 - 092.18: 546.172.6 - 31

О.В. Козина, Е.В. Комякова, В.А. Егоров

ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МИКРОБИЦИДНЫХ СИСТЕМ ПРИ БРОНХИАЛЬНОЙ АСТМЕ

Камчатский краевой центр по профилактике и борьбе со СПИД и инфекционными заболеваниями, 683003, ул. Ленинградская, 112, корп. 2, тел.: 8-(4152)-41-25-97, г. Петропавловск-Камчатский

Инфекции дыхательных путей (ДП) играют важную роль в патогенезе бронхиальной астмы (БА), приводя к нарушению нейрогенной регуляции тонуса гладкой мускулатуры бронхов, повреждению бронхолегочного эпителия, повышению сосудистой проницаемости, усилению продукции реагиновых антител и т. д. [1, 4, 8, 11, 12]. Важное значение в формировании БА придается хроническим вирусным инфекциям, ухудшающим мукоцилиарный клиренс и облегчающим продвижение бактерий в нижние отделы ДП на фоне подавления фагоцитарной активности альвеолярных макрофагов [11]. Микст-инфекции формируют более тяжелое течение обострений и изменяют клиническую картину болезни [1, 12]. При этом у пациентов с БА наблюдается гиперпродукция оксида азота (NO) [2, 9], который, с одной стороны, выступает как медиатор бронходилатации и вазодилатации, а с другой стороны, являясь эффекторной цитотоксической молекулой, активно участвует в иммунных и воспалительных процессах [3, 10].

В связи с этим целью работы явилось изучение роли инфекции в активации фагоцитарной активности и сопутствующей продукции нитритов в ДП у больных БА различной степени тяжести.

Материалы и методы

На основании информированного согласия проведено клинико-анамнестическое и инструментальное обследование 39 взрослых, страдающих БА. У 8 больных диагностирована легкая персистирующая, у 19 больных — персистирующая БА средней тяжести и у 12 больных

Резюме

При исследовании функционального состояния моноцитарно-макрофагальных клеток больных бронхиальной астмой установлена дефектность микробицидных систем, приводящая к персистенции микробно-вирусных ассоциаций, хронизации воспаления и необратимым процессам ремоделирования стенки дыхательных путей.

Ключевые слова: бронхиальная астма, оксид азота, инфекции, фагоцитоз.

O.V. Kozina, E.V. Komyakova, V.A. Egorov FUNCTIONAL CONDITION MICROBICID SYSTEMS IN BRONCHIAL ASTHMA

The center on prevention and fight against AIDS and infectious diseases, Petropavlovsk-Kamchatski

Summary

The study of a functional condition monocyte-macrophages cells of patients with bronchial asthma demonstrates defects of antimicrobial systems, leading to persistence of virus and walls of respiratory ways remodeling.

 $\it Key\ words$: bronchial asthma, nitric oxide, infections, phagocytosis.

— тяжелая персистирующая форма течения БА. При постановке клинического диагноза использовались критерии GINA [6]. Проведено исследование напряженности

Характеристика противоинфекционного иммунитета больных БА (М±m)

Показатели	Тяжесть бронхиальной астмы		
	легкая, n=8	средне- тяжелая, n=19	тяжелая, n=12
IgG к CMV, cut-off	7,96±0,83°	7,3±0,89°	10,42±0,74*
IgG к HSV, cut-off	6,86±1,36 ^{A,D}	10,59±1,17*	11,64±1,21**
IgG к NA EBV, cut-off	1,76±0,72	1,07±0,41	2,20±0,49
IgG к VGA EBV, cut-off	4,76±1,02 ^{A,D}	7,55±0,95*	8,29±1,31**
IgG+IgM к St. aureus, титр	150,00±43,92 ^{B,D}	377,26±75,53**	340,00±69,02**
IgG к М. pneumoniae, BU/ml	10,67±3,01 ^{A,D}	25,00±5,13*,c	55,24±13,13**,A
IgA к M. pneumoniae, BU/ml	6,24±1,11 ^{A,D}	1,32±0,84*,D	12,07±3,42**,B
IgM к M. pneumoniae, BU/ml	0,29±0,29 ^D	2,65±1,55 ^D	8,94±2,71**,B
IgG к Ch. pneumoniae, титр	8,75±5,15 ^D	14,74±4,98 ^D	83,33±28,35**,B

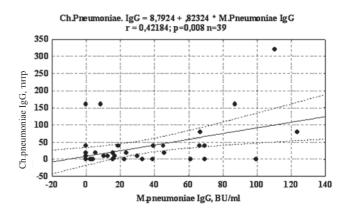
Примечания. *— p<0,05; **— p<0,001 в сравнении с легкой степенью БА; ^ — p<0,05; В — p<0,001 в сравнении со среднетяжелой степенью БА; $^{\rm C}$ — p<0,05; $^{\rm D}$ — p<0,001 в сравнении с тяжелой степенью БА.

противоинфекционного иммунитета (наличие специфических антител в сыворотке крови) иммуноферментным методом к Ch. pneumoniae (тест-системы ЗАО «Вектор-Бест», г. Новосибирск), вирусу простого герпеса (HSV) 1 и 2 типов, цитомегаловирусу (CMV), вирусу Эпштейна-Барра (EBV) (тест-системы ДС, Н-Новгород), к М. pneumoniae (тест-системы «Savyon», Израиль), в латексагглютинации — к St. aureus (тест-системы НПЦ «Медицинская иммунология», г. Москва). Положительным считали уровень AT к M. pneumoniae выше 10 BU/ml; титры к Ch. pneumoniae — выше 1/10, к St. Aureus выше 1/80. Функциональную активность фагоцитов периферической крови оценивали по НСТ (спонтанный и стимулированный) и ЛКБ-тестам. Бронхологическое обследование проведено в период ремиссии для последующего определения стабильных метаболитов NO (нитриты, реактив Грисса) в бронхиальном смыве (БС).

Статистическая обработка проведена с использованием пакета программ Statistica 6.0. Для признаков с нормальным распределением использовали t-критерий Стьюдента, для признаков, не соответствующих нормальному закону распределения, применяли U-тест Манна-Уитни. Для корреляционного анализа использовали критерий Пирсона.

Результаты и обсуждение

Согласно дизайну исследования, все пациенты имели сопоставимую длительность основного заболевания. Большинство обследованных составили женщины (82,1%) со среднетяжелым течением астмы (48,7%) в возрасте старше 46 лет. Уровень АТ к изученным инфекциям приведен в табл. 1.


Как видно из табл. 1, распространенность инфицирования среди пациентов, страдающих БА, была достаточно высокой. Так, установлены положительные результаты серодиагностики St. aureus у 74,3% (29 чел.), Ch. pneumoniae

Характеристика фагоцитарного звена у больных бронхиальной астмой (M±m)

Показатели	Тяжесть бронхиальной астмы		
	легкая, n=8	средне- тяжелая, n=19	тяжелая, n=12
Нейтрофилы, 10 ⁶ /л	3280,25	3009,84	2891,67
	±332,58	±468,91	±252,64
Моноциты,	430,87	394,47	524,08
10 ⁶ /л	±116,51	±45,27	±84,03
КФМА, УЕ	0,36	0,21	0,09
	±0,06 ^{A,D}	±0,03*,c	±0,02**,A
ИФ, УЕ	235,07	449,0	662,41
	±13,54 ^{B,D}	±48,61**,B	±91,54**,B
ЛКБ, УЕ	127,87	113,58	95,67
	±7,66	±10,52	±6,68*

Примечания. * — p<0.05; ** — p<0.001 в сравнении с легкой степенью БА; ^A — p<0.05; ^B — p<0.001 в сравнении со среднетяжелой степенью БА; ^C — p<0.05; ^D — p<0.001 в сравнении с тяжелой степенью БА; КФМА — коэффициент функциональной метаболической активности; ИФ — индекс фагоцитоза; ЛКБ — лизосомально-катионные белки; УЕ — условные единицы.

— у 43,6% (17 чел.), M. pneumoniae — у 48,7% (19 чел.). Одновременно несколько инфекций (микст-инфицирование) зарегистрировано у 89,7% (35 чел.), имеющих положительные результаты тестирования в отношении трех и более инфекций. Было установлено, что высокая напряженность противоинфекционного иммунитета к нескольким инфекциям одновременно определялась в случае тяжелой БА достоверно чаще ($\chi^2=24,30$; p=0,01). Причем, удельный вес пациентов с текущей микоплазменной инфекцией (подтвержденной наличием IgM и IgA) превосходил серологическую распространенность аналогичного процесса, вызванного Ch. pneumoniae (p<0,05). Регистрация иммунного ответа выявила увеличение уровня специфических антител ко всем герпес-вирусам, ассоциированное с утяжелением БА (p<0,05). Наиболее диагностически значимые и высокие титры суммарных антител к St. Aureus чаще регистрировались у больных со среднетяжелой и тяжелой БА ($\chi^2=18,27$; p=0,01). Серологическая диагностика патогенов, тропных к эпителиоцитам респираторного тракта, продемонстрировала наличие нескольких инфекций у подавляющего большинства боль-

Puc. 1. Положительная корреляционная связь между уровнем противоинфекционных антител к Ch.pneumoniae и M. Pneumoniae больных БА

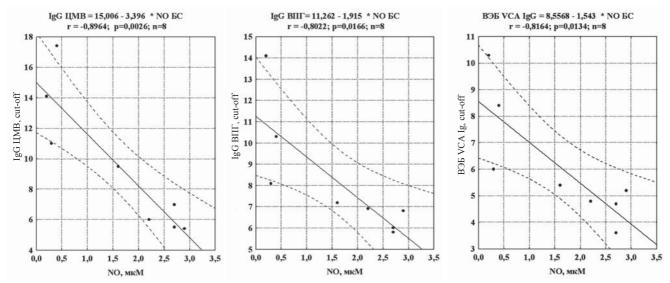


Рис. 2. Отрицательная корреляционная связь между уровнем нитритов в БС и уровнем противоинфекционных антител к герпес-вирусам у больных легкой бронхиальной астмой

ных тяжелой астмой, способствующих более тяжелому течению заболевания (рис. 1).

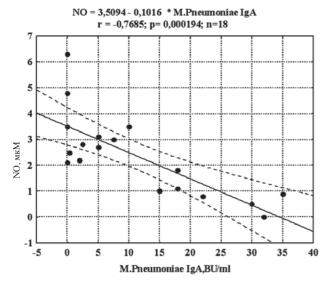
На основании вышесказанного, у больных БА была изучена фагоцитарная активность лейкоцитов периферической крови (табл. 2). Количество моноцитов и нейтрофилов периферической крови у пациентов были в пределах нормативных значений, принятых в регионе. Изучение O_2 -зависимых микробицидных систем в НСТ-тесте выявило пассивность бактерицидных пероксидазных систем (опосредованное НАДФН-оксидазой).

Как видно из табл. 2, ИФ показал запас резервных метаболических возможностей лишь у больных с легкой степенью БА. У остальной части обследованных пациентов высокие цифры ИФ свидетельствовали о незавершенности фагоцитоза и истощении фагоцитарной активности на фоне длительной антигенной стимуляции.

Анализ ЛКБ-теста подтвердил дефектность функционирования и $\rm O_2$ -независимого микробицидного потенциала фагоцитирующих нейтрофилов у 25% больных с легкой БА и 50% пациентов со среднетяжелой и тяжелой формами заболевания. Таким образом, при астме снижается эффективность фагоцитоза, как $\rm O_2$ -зависимого, так и $\rm O_2$ -независимого. Снижение резистентности обследуемых к выявленным микробно-вирусным ассоциациям связано с тяжестью патологического процесса.

Известно, что состояние окислительного стресса, вызванное инфекционным воспалением в ДП, связано с активностью НАДФН-оксидазы и iNOS [3, 10]. Проведенная нами ранее [2] оценка NO-продуцирующей функции респираторного тракта показала достоверное повышение нитритов в бронхоальвеолярных смывах у больных БА в сравнении со здоровыми (р<0,05). Известно, что хроническое воспаление ДП, опосредованное персистенцией микробно-вирусных ассоциаций, является индуктором повышенного синтеза NO эпителиальными и воспалительными клетками [3-5]. Проведенное исследование позволило выявить отчетливую зависимость содержания в БС NO от уровня противоинфекционных антител у больных легкой и среднетяжелой БА.

Так, на рис. 2 представлена тесная отрицательная связь между уровнем антител к герпес-вирусам и содер-


жанием нитритов при легкой БА, подтверждающая наличие NO-опосредованной супрессии этих вирусов.

На рис. 3 представлены аналогичные сильные отрицательные корреляции, установленные к мембранно-ассоциированной бактерии М.рпештопіае для пациентов со среднетяжелым течением БА. Напротив, у пациентов тяжелой БА на фоне зарегистрированных высоких значений уровня нитритов в БС не выявлено ассоциаций изучаемых параметров. Современная концепция определяет патогенез бронхиальной астмы как специфический воспалительный процесс в бронхиальной стенке, приводящий к развитию обструкции и усилению гиперреактивности бронхов, а выраженность признаков воспаления бронхов коррелирует с клиническими симптомами, характеризующими тяжесть заболевания [6].

Известно, что в процессе кислородного взрыва синтезируемые фагоцитами NO и целый ряд его активных форм обладают мощным бактерицидным, фунгицидным и вирусоцидным эффектами, содействуя гибели фагоцитированных микроорганизмов [4]. С другой стороны, выраженный окислительный стресс опосредует образование токсичных метаболитов NO [2], деструкцию эпителиальных клеток и ремоделирование бронхиальной стенки у пациентов БА [7]. Возможно, при тяжелой астме на фоне хронического воспаления и нарушенного мукоцилиарного клиренса нарушение функциональной активности систем клеток воспаления способствует незавершенному фагоцитозу, выживанию фагоцитированных микроорганизмов, приводя к персистенции микробно-вирусных ассоциаций, хронизации воспаления и необратимым процессам ремоделирования стенки ДП.

Выводы

- 1. Течение тяжелой БА ассоциировано с микст-инфицированием, что сопровождается напряжением противоинфекционного иммунитета, характеризующимся повышением концентрации специфических антител.
- 2. У больных легкой и среднетяжелой степенью БА высокие уровни NO сопоставимы с микробицидной эффективностью этой молекулы.

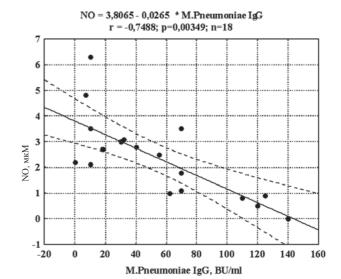


Рис. 3. Отрицательная корреляционная связь между уровнем нитритов в БС и уровнем противоинфекционных антител к М. Pneumoniae у больных среднетяжелой БА

- 3. У больных тяжелой БА выявлены выраженные изменения функционального статуса нейтрофильных гранулоцитов, характеризующиеся дефектностью кислородзависимой и кислороднезависимой защитных систем клеток.
- 4. Хронический воспалительный процесс при тяжелом течении БА сопровождается высоким уровнем NO в БС, в большей степени опосредуя образование токсичных метаболитов NO и повреждение легочных структур и в меньшей определяя микробицидный потенциал.

Литература

- 1. Огородова Л.М., Козина О.В., Раенко В.Ф. и др. Сравнительная характеристика содержания IgE у детей с атоническими заболеваниями, протекающими на фоне персистирующих инфекций // Аллергология. 2005. №1. С. 13-16.
- 2. Козина О.В., Огородова Л.М., Андрушкевич В.В. и др. Метаболиты оксида азота и их значение в патогенезе бронхиальной астмы // Клин. и лаб. диагностика. 2008. №2. С. 52-57.
- 3. Покровский В.И., Виноградов Н.А. Оксид азота, его физиологические и патофизиологические свойства // Тер. архив. 2005. №1. С. 82-87.
- 4. Bals R., Hiemstra P.S. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens // Eur. Respir. J. 2004. Vol. 23. P. 327-333.
- 5. Fixman E.D., Stewart A., Martin J.G. Basic mechanisms of development of airway structural changes in asthma // Eur. Respir. J. 2007. Vol. 29. P. 379-389.
- 6. Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma. NIH Publication

number. 01-3659, NHLBI/WHO 2002; National Institutes of Health.

- 7. Holgate S.T., Lackie P., Wilson S. et. al. Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma // Am. J. Respir. Crit. Care Med. 2000. Vol. 162. P. 113-117.
- 8. Holt P.G., Sly P.D. Interactions between respiratory tract infections and atopy in the aetiology of asthma // Eur. Respir. J. 2002. Vol. 19. P. 538-545.
- 9. Kozina O.V., Egorov V.A., Komjakova E.V. et. al. Features of production nitric oxide at patients with a bronchial asthma // Eur. Respir. J. 2006. Vol. 28 (50). P. 445.
- 10. Ricciardolo F.M. Multiple role of nitric oxide in the airways // Thorax. -2003. Vol. 58. P. 175-182.
- 11. Schwarze J. Gelfand E.W. Respiratory viral infections as promoters of allergic sensitization and asthma in animal models // Eur. Respir. J. -2002. Vol. 19. P. 341-349.
- 12. von Hertzen L.C. Role of persistent infection in the control and severity of asthma: focus on Chlamydia pneumoniae // Eur. Respir. J. 2002. Vol. 19. P. 546-556.

Координаты для связи с авторами: Козина Ольга Владимировна — врач Камчатского краевого центра по профилактике и борьбе со СПИД и инфекционными заболеваниями, канд. мед. наук, e-mail: ovkozina2006@ rambler.ru, тел.: 8-(4152)-42-66-34; Егоров Владимир Александрович — врач-эндоскопист Камчатского областного онкологического диспансера, тел.: 8-962-281-41-89; Комякова Елена Викторовна — врач-аллерголог Камчатского краевого центра по профилактике и борьбе со СПИД и инфекционными заболеваниями, тел.: 8-(4152)-42-63-39.

