УДК 616.12-008

И. П. Татарченко, А. Г. Денисова, Н. В. Позднякова, О. И. Морозова

ЭЛЕКТРИЧЕСКАЯ НЕСТАБИЛЬНОСТЬ МИОКАРДА ПРИ ДИАСТОЛИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ И НАРУШЕНИИ УГЛЕВОДНОГО ОБМЕНА

Аннотация.

Актуальность и цели. Изучали электрофизиологические показатели и структурно-функциональные параметры сердца у больных с диастолической сердечной недостаточностью при сахарном диабете типа 2 (СД2).

Материал и методы. Наблюдали 128 больных (56 мужчин, 72 женщины, средний возраст $59,9 \pm 7,4$ года). Комплекс обследования, помимо стандартного клинико-лабораторного обследования, включал электрокардиографию в 12 отведениях, эхокардиографию (ЭхоКГ), холтеровское мониторирование ЭКГ (ХМ ЭКГ), регистрацию сигнал-усредненной ЭКГ (СУ-ЭКГ) с выделением поздних потенциалов желудочков (ППЖ), оценку реполяризации желудочков – дисперсию интервала Q-T (QT_d), корригированный интервал Q-T (QT_c).

Результаты. При диастолической дисфункции левого желудочка по рестриктивному типу поздние потенциалы желудочков диагностированы у 72,4% пациентов, отмечена высокая частота сложных форм желудочковой аритмии: желудочковая экстрасистолия IV–V градаций (48,3%) и III градации (34,5%).

Bыводы. Исследование показало наличие тесной корреляции между диастолической функцией левого желудочка и показателями, отражающими электрическое ремоделирование миокарда.

Ключевые слова: сахарный диабет, электрическая нестабильность миокарда, диастолическая сердечная недостаточность.

I. P. Tatarchenko, A. G. Denisova, N. V. Pozdnjakova, O. I. Morozova

ELECTRICAL INSTABILITY OF THE MYOCARDIUM WITH DIASTOLIC HEART FAILURE AND IMPAIRED CARBOHYDRATE METABOLISM

Abstract.

Background. The authors studied electrophysiological indices and structural-functional parameters of the heart in patients with diastolic heart failure at diabetes mellitus type 2 (DM2).

Methods and materials. The researchers observed 128 patients (56 men and 72 women) with the average age of 59.9 ± 7.4 years. Besides the standard clinical research, the authors performed a whole complex of work including electrocardiography in 12 derivations, echocardiography, Holter monitoring, registration of average-signal electrocardiography with identification of ventricular delayed potential, analysis of variability of cardiac rhythm, evaluation of ventricle repolarization - interval dispersion Q-T (QTd), resolved interval Q-T (QTC).

Results. At diastolic dysfunction of the left ventricular by a restrictive type the ventricular delayed potentials were diagnosed in 72,4 % of patients; the researchers registered high incidence of complex forms of ventricular arrhythmias: ventricular premature beats IV-V grades (48,3 %) and III grade (34,5 %).

Conclusions. The study showed a strong correlation between the diastolic function of the left ventricle and the indicators of electrical remodeling of the myocardium

Key words: diabetes mellitus, electrical instability of the myocardium, diastolic heart failure.

Введение

Желудочковые нарушения ритма (ЖНР) рассматриваются одним из факторов провокации внезапной сердечной смерти (ВСС), однако желудочковые аритмии являются и непосредственной причиной развития и прогрессирования (ХСН) [1]. В 35–50 % наблюдений у больных с хронической сердечной недостаточностью (ХСН) регистрируется аритмическая смерть [2], при этом половина больных І–ІІ функционального класса (ФК) умирает внезапно без нарастания признаков сердечной декомпенсации.

Показатели систолической функции: увеличение объема полости левого желудочка и снижение фракции выброса — показали себя независимыми предикторами смертности и выживаемости больных ХСН. Признаются систоло-диастолические взаимоотношения при сердечной недостаточности, при этом нарушению диастолического наполнения сердца отводится даже большая роль, чем систолическим расстройствам [3, 4]. Диастолические свойства миокарда определяют функциональный резерв сердца и толерантность к нагрузкам [5], повышая риск сердечно-сосудистых осложнений, причем прогрессирование сердечной недостаточности при сахарном диабете типа 2 (СД2) возможно, несмотря на отсутствие дилатации левого желудочка (ЛЖ) и наличие нормальной фракции выброса [6]. Социальная значимость сахарного диабета 2 типа состоит в высокой инвалидизации и смертности больных в связи с кардиоваскулярными нарушениями [7].

Для возникновения злокачественных аритмий признается наличие структурной патологии сердца, и если взаимосвязь проаритмических факторов достаточно четко определена с показателями систолической дисфункции, то роль нарушений диастолической функции в формировании электрической нестабильности миокарда остается недостаточно изученной. Актуальным сохраняется необходимость анализа механизмов, обусловливающих нарушение электрофизиологических свойств и ассоциирующихся с патологическими электрокардиографическими феноменами, желудочковыми аритмиями.

Цель исследования — изучение электрофизиологических показателей сердца и структурно-функциональных параметров левого желудочка у больных СД2 и диастолической сердечной недостаточностью (ДСН).

Материал и методы

В рамках открытого контролируемого исследования наблюдали 128 больных ИБС (56 мужчин, 72 женщины, средний возраст 59.9 ± 7.4 года) с признаками ХСН І–ІІІ ФК по классификации NYHA и фракцией выброса левого желудочка (ФВ ЛЖ) более 50%, со стабильным течением заболевания на протяжении предшествующего месяца, при наличии устойчивого синусового ритма. Обязательным условием включения было наличие СД2 длительностью не более 15 лет с момента установления диагноза при условии лечения пероральными сахароснижающими препаратами. Критерии исключения:

АГ третьей степени (АД выше 180/110 мм рт. ст.); наличие клапанных пороков сердца, наличие хронической печеночной и почечной недостаточности, мозгового инсульта давностью менее двух лет. От каждого пациента было получено письменное информированное согласие на добровольное участие в исследовании в соответствии с протоколом, утвержденным решением локального этического комитета. Клиническая характеристика больных представлена в табл. 1.

Таблица 1 Клиническая характеристика больных

Показатели	Число лиц, п	%
Инфаркт миокарда:		
- c Q	48	37,5
– без Q	41	32
Периферический атеросклероз	37	29
Артериальная гипертония	82	64
Отягощенный наследственный анамнез	92	72
Хроническая сердечная недостаточность:		
– І ФК	42	32,82
– II ФК	51	39,84
– III ΦK	35	27,34

Примечание. n — абсолютное число пациентов; % — число лиц, имеющих данный показатель, от общего числа лиц, включенных в исследование.

В зависимости от типа нарушения диастолической функции левого желудочка (ДФ ЛЖ) выделено три группы больных: группа I (n=55) с аномальной релаксацией ЛЖ, группа II (n=44) с псевдонормальным типом диастолической дисфункции (ДД) ЛЖ, группа III (n=29) с рестриктивным типом ДД ЛЖ.

Комплекс обследования, помимо стандартного клинико-лабораторного обследования, включал электрокардиографию в 12 отведениях, эхокардиографию (ЭхоКГ), холтеровское мониторирование ЭКГ (ХМ ЭКГ), регистрацию сигнал-усредненной ЭКГ (СУ-ЭКГ) с выделением поздних потенциалов желудочков (ППЖ), оценку реполяризации желудочков — дисперсию интервала Q-T (QT_d), корригированный интервал Q-T (QT_c).

ЭхоКГ выполняли на аппарате VIVID E9 (GE Healthcare) в режиме секторального сканирования с использованием режимов цветного допплеровского картирования, тканевого допплера, импульсного и непрерывноволнового допплеров. Изучали структурно-геометрические показатели левого желудочка. При оценке диастолической функции (ДФ) ЛЖ анализировали показатели трансмитрального диастолического потока (ТМДП) в раннюю и позднюю диастолу (E, A, м/c), соотношение E/A, время замедления (DT, мс), время изоволюметрического расслабления (IVRT, мс), продолжительность диастолы (ET); кровоток в устье легочных вен (D, см/c; Ar, см/c; Adur/Ar). При тканевой допплерографии изучали максимальные скорости движения фиброзного кольца (ΦK) митрального клапана и трикуспидального клапана: S' (см/с) — пиковая систолическая скорость; E' (см/с) — пиковая скорость раннего диастолического расслабления; A' (см/с) — пиковая скорость в фазу систолы предсердий; соотношение максимальной скорости раннего наполнения ЛЖ

(*E*) к максимальной скорости движения ФК митрального клапана в раннюю диастолу (*E*'). В качестве диагностических критериев нарушения ДФ ЛЖ использованы ультразвуковые нормативы Европейского общества кардиологов, рекомендованные Всероссийским научным обществом кардиологов [8].

Для выполнения XM ЭКГ использовали комплекс *Astrocard* («Медитек»), при анализе суточной записи рассчитывали: общую продолжительность суточной ишемии миокарда, максимальную глубину снижения сегмента ST, суточное количество эпизодов болевой и безболевой ишемии, ЧСС в начале ишемических эпизодов. Ишемическими изменениями ЭКГ считали горизонтальную или косовосходящую депрессию сегмента ST более 1,5 мм на расстоянии 0,08 с от точки J продолжительностью не менее 60 с, подъем ST сегмента на 2 мм и более. При анализе желудочковых нарушений ритма (ЖНР) изучали морфологию аритмии, интервал сцепления желудочковой экстрасистолии (ЖЭ), связь с нагрузкой и ишемическими эпизодами.

СУ-ЭКГ регистрировали с использованием программного обеспечения аппарата $CARDIOVIT\ AT$ -10 (Schiller). При временном анализе учитывали по-казатели: продолжительность фильтрованного комплекса $QRS\ (HF\ QRS-Dauer)$, среднеквадратичная амплитуда последних 40 мс комплекса $QRS\ (RMS\ 40)$, продолжительность низкоамплитудных сигналов в конце фильтрованного комплекса $QRS\ (LAH\ Fd)$. Патологическими параметрами СУ-ЭКГ, соответствующие критерям ППЖ, считали $HF\ QRS$ -Dauer — более 114 мс, $RMS\ 40$ — менее 25 мкВ, $LAH\ Fd$ — более 38 мс.

Для количественной оценки негомогенности процессов реполяризации применяли электрокардиограф «Поли-Спектр-8/Е» («Нейрософт») с программой анализа интервала Q-T.

Статистический анализ производился с применением стандартных методов вариационной статистики. Сравнение переменных проводилось с применением критерия χ^2 , рангового коэффициента корреляции Спирмена (R). При оценке линейной связи между величинами вычисляли коэффициент парной корреляции Пирсона (r). За статистическую достоверность различий принималось значение p < 0.05.

Результаты и обсуждение

Виды нарушений сердечного ритма, зарегистрированные при мониторировании ЭКГ, представлены в табл. 2.

ЖНР выявлены у 120 (93,8 %) пациентов, причем в 68 % случаев отмечено сочетание ЖНР с различными формами наджелудочковых нарушений ритма (НЖНР).

При анализе желудочковой экстрасистолии (ЖЭ) получены следующие данные: у 40 (31,25 %) пациентов – ЖЭ I градации, у 23 (20,3 %) – сложные формы ЖНР (ЖЭ IV–V градаций). Полиморфная желудочковая экстрасистолия регистрировалась в 33 (25,8 %) случаях.

У больных СД2 с рестриктивным типом ДД ЛЖ в сравнении с аналогичными показателями группы I отмечена высокая частота сложных форм ЖНР: ЖЭ IV–V градаций (48,3 %) и ЖЭ III градации (34,5 %), p < 0,05. Достоверных различий в регистрации мономорфной ЖЭ II градации в сравниваемых группах I и III не получено. Реже встречались сложные формы ЖЭ IV–V градаций у больных с псевдонормальным типом ДД ЛЖ (12,2 %) в сравнении с группой III, $\chi^2 = 9,7$; p < 0,01.

Таблица 2 Нарушения ритма сердца у больных сахарным диабетом с диастолической сердечной недостаточностью

Показатель	Группы больных				
Показатель	группа I	группа II	группа III		
Типы нарушения ДФ ЛЖ	I тип	II тип	III тип		
Число пациентов, п	55	44	29		
Число больных с ППЖ, п	7	24	21		
Число больных с НРС, п	55	44	29		
в т.ч. больные с ЖНР, п	50	41	29		
из них сочетание ЖНР и НЖНР, п	34	32	21		
Анализ желудочковой экстрасистолии					
I градации, <i>n</i> /%	29/58 °	10/24,4~	1/3,4*		
II градации, <i>n</i> /%	7/14	10/24,4	4/13,8		
III градации, <i>n</i> /%	10/20°	13/31,7	10/34,5*		
IV-V градаций, n/%	4/8 °	8/19,5*	14/48,3*		

Примечание: І тип — аномальная релаксация левого желудочка; ІІ тип — псевдонормальный тип диастолической дисфункции левого желудочка; ІІІ тип — рестриктивный тип диастолической дисфункции левого желудочка; НРС — нарушения ритма сердца; НЖНР — наджелудочковые нарушения ритма; ЖНР — желудочковые нарушения ритма; ППЖ — поздние потенциалы желудочков; n — число больных, имеющих данный признак; /% — процент от числа больных данной группы; * p < 0,05 — различия достоверны между ІІІ типом и ІІ типом; $^{\circ}p$ < 0,05 — различия достоверны между ІІ типом и ІІІ типом.

Результаты отдельных исследований свидетельствуют о влиянии ремоделирования сердца на прогрессирование сердечной недостаточности, возникновение аритмий, сердечно-сосудистую смертность [9]. Морфологическим субстратом ремоделирования ЛЖ являются процессы, происходящие на всех уровнях структурной организации сердца. Это молекулярные, клеточные, интерстициальные изменения, клинически выражающиеся в изменениях размера, формы и функциональных возможностей сердца в ответ на действие патологического фактора [10]. На процесс сердечного ремоделирования влияют гемодинамические условия, нейрогормональная активация и ряд других факторов, но в то же время вопрос о механизмах, существенно увеличивающих смертность от инфаркта миокарда, в том числе внезапной смерти на фоне гипертрофии ЛЖ, остается дискутабельным.

В собственном исследовании нормальная геометрия ЛЖ выявлена у 25 (19,5%) больных, концентрическое и эксцентрическое ремоделирование отмечено соответственно в 45 (35,2%) и 50 (39%) случаях, тогда как концентрическая гипертрофия ЛЖ выделена у восьми (6,3%) пациентов. Именно в группе III при сравнении с группами I и II (p < 0.05), достоверно выше показатели частоты эксцентрического ремоделирования и концентрической гипертрофии ЛЖ (соответственно 55,2 и 24%).

Отмечено достоверное отличие в регистрации сложных форм ЖЭ III–V градации у больных при различных типах ремоделирования: при концентрической гипертрофии ЛЖ (87,5 %) и эксцентрическом ремоделировании

(76 %) в сравнении с больными при нормальной геометрии ЛЖ (8 %) и концентрическом ремоделировании (26,7 %), p < 0.05.

При СД2 и коронарной недостаточности важна не только степень структурно-геометрической перестройки ЛЖ, но и функциональные нарушения, лежащие в основе изменения механической активности ЛЖ. В основе этой дисфункции лежит нарушение сократительной способности и удлинение кардиомиоцитов, в результате чего ишемизированные и сохранные зоны значительно различаются по степени систолического утолщения и по последовательности сокращения и расслабления волокон миокарда, что приводит к кинетической асинхронности между поврежденными и интактными отделами стенки ЛЖ и регионарной неоднородности [11].

Несомненную значимость при риск-стратификации больных приобрела электрокардиография высокого разрешения [12]. ППЖ, являясь отражением фрагментированной задержанной электрической активности, участвуют в генерации следовой деполяризации одной или нескольких областей миокарда, что и объясняет полученные нами данные, отражающие особенности регистрации сложных форм ЖНР.

При анализе желудочковой аритмии и показателей СУ-ЭКГ выявлена закономерность: полиморфные, ранние, парные, залповые ЖЭ регистрировались достоверно чаще у больных с фрагментированной замедленной активностью (n = 52) в сравнении с больными без ППЖ (n = 76), соответственно 45 (86,5 %) и 14 (18,4 %) пациентов ($\chi^2 = 7,4$; p < 0,001) (рис. 1).

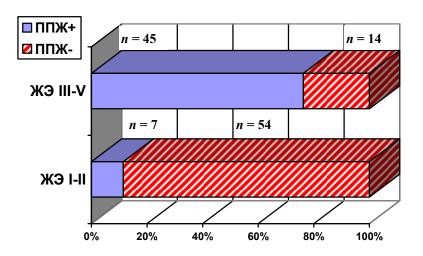


Рис. 1. Особенности выявления желудочковой экстрасистолии у больных с нормальными и патологическими показателями СУ-ЭКГ

Примечание: ППЖ+ – больные с поздними потенциалами желудочков; ППЖ- – больные с нормальными показателями сигнал-усредненной ЭКГ.

Наиболее частым механизмом тахиаритмий высоких градаций является повторный вход импульса — наличие одностороннего и задержанного проведения фронта волны деполяризации вследствие нарушения межклеточных контактов в параллельно ориентированных волокнах, гетерогенности распро-

странения и фрагментации волнового фронта деполяризации, маркером которого и выступают ППЖ. Именно этим мы объясняем значимое преобладание сложных форм ЖЭ в группе больных с замедленной фрагментированной желудочковой активностью (86.5%).

Данные корреляционного анализа указывают на значимую связь продолжительности фильтрованного комплекса HF QRS-Dauer и $\mathfrak{W}\mathfrak{I}$ IV-V градаций (R=0,694; p<0,05). Характер регистрируемых $\mathfrak{W}HP$ ($\mathfrak{W}\mathfrak{I}$ IV-V градаций) зависел и от амплитуды замедленной фрагментированной активности RMS40 (R=0,5695; p<0,05) и продолжительности замедленной фрагментированной активности LAH Fd (R=0,5197; p<0,05).

Следует отметить, что при нарастании степени нарушения диастолической функции чаще регистрировались ППЖ и желудочковые аритмии. При ДД по рестриктивному типу замедленная фрагментированная активность в конце желудочкового комплекса диагностирована у 21 (72,4 %) пациента, причем ЖЭ IV–V градации отмечена у 14 (48,3 %) больных, III градации – в 34,5 % случаев.

При II типе ДД (псевдонормальный тип) ППЖ выделены у 24 (54,5 %) пациентов, при этом именно у больных с патологическими показателями СУ-ЭКГ выявлены сложные формы ЖЭ - 8 (18,2 %), ЖЭ III градации - 11 (25 %).

Данные собственного исследования позволяют утверждать, что прогрессирование диастолической дисфункции способствует фрагментации процесса деполяризации, что связано с гетерогенностью активации сохранившихся миокардиальных волокон, разделенных фиброзной тканью. В зонах миокардиальной дисфункции электрофизиологическая альтернация клеток и их мембран, связанная с ремоделированием после эпизодов ишемии и (или) перенесенного инфаркта миокарда, способствует развитию «электромеханического несоответствия».

Маркером нестабильности электрофизиологических свойств миокарда может служить феномен QTd, увеличение QTd ассоциируется с повышенным риском возникновения опасных аритмий у больных, перенесших острый инфаркт миокарда [13]. Мы изучали временную реполяризацию желудочков QT_c и QT_d у больных СД2 с ХСН при различных вариантах нарушения диастолической функции левого желудочка (табл. 3).

Таблица 3 Анализ *Q-Т* интервала у больных сахарным диабетом с диастолической сердечной недостаточностью

Показатель	Группа I	Группа II	Группа III
RRNN, MC	764 ± 102	820 ± 94	721 ± 112
QT_c , мс	$408,5 \pm 6,2*$	431,3 ± 3,6**	$452,4 \pm 6,3$
QT_d , mc	$51,7 \pm 2,7*$	59,6 ± 3,3**	$68,2 \pm 2,1$

Примечание: RRNN – продолжительность интервалов R-R между синусовыми сокращениями; QT_c – корригированный интервал Q-T; QT_d – дисперсия интервала Q-T; p < 0,001 – разница достоверна между группами I и III; ** p < 0,05 – разница достоверна между группами I и II.

Установлено различие QT_d между группами с различными типами диастолических нарушений, однако наиболее значимо различие показателя при рестриктивном типе ДД ЛЖ в сравнении со значением QT_d у больных при аномальной релаксации левого желудочка, соответственно $68,2\pm2,1$ мс и $51,7\pm2,7$ мс (p<0,001).

Мы отметили, что в группе с рестриктивным типом диастолической дисфункции достоверно выше доля больных с интервалом QT_c более 440 мс (n=19;65,5%) и QT_d более 50 мс (n=21;72,4%) по сравнению с таковыми показателями у пациентов при псевдонормальном типе ДД ЛЖ, соответственно 15 (34%) и 18 (41%).

При сравнении QT_d у больных СД2 при различных видах ЖНР оказалось, что количественное значение QT_d увеличивалось в зависимости от тяжести аритмий: более высокие значения выявлялись у больных при наличии ЖЭ высоких градаций, пробежек желудочковой тахикардии. Средние значения QT_d у больных без ЖНР (n=8) составили $36,3\pm2,4$ мс, в сравнении с пациентами при наличии ЖНР IV–V градации (n=26) $74,5\pm3,1$ мс. Получена значимая разница при сравнении значений QT_d между больными с ЖНР I градации (n=40) с ЖНР III (n=33) и с ЖНР IV–V градаций (n=26), соответственно $38,9\pm2,9,56,3\pm2,4$ и $74,5\pm3,1$ мс (p<0,05).

Установлена корреляционная связь QT_d с ЖЭ IV–V градаций R=0,652, p<0,001. Получена корреляционная связь дисперсии интервала Q-T с показателями СУ-ЭКГ: с амплитудой фрагментированной активности RMS-R=0,496 (p<0,05); с продолжительностью LAH Fd-R=0,531 (p<0,02); с продолжительностью фильтрованного QRS комплекса HF QRS-Dauer-R=0,546 (p<0,05).

Неравномерность функциональных изменений кардиомиоцитов в условиях острой и хронической ишемии, специфические структурные изменения миокарда у больных СД создают условия для изменения процессов реполяризации и появления замедленной фрагментированной желудочковой активности. Именно негомогенностью электрофизиологических свойств миокарда, сопровождающей формирование миокардиального аритмогенного субстрата у больных СД с диастолической дисфункцией левого желудочка, может быть объяснена корреляция дисперсии *QT* интервала с показателями СУ-ЭКГ, ЖЭ высоких градаций.

Заключение

Таким образом, проведенное нами исследование показало, что ведение больных сахарным диабетом 2 типа, осложненным сердечной недостаточностью, должно сопровождаться изучением степени тяжести нарушения диастолической функции, определением структурно-геометрического и электрофизиологического ремоделирования левого желудочка.

Есть основания утверждать, что прогрессирование диастолической дисфункции в условиях сохраняющихся и (или) нарастающих проявлений хронической коронарной недостаточности способствует электрофизиологической альтернации клеток и их мембран, развитию «электромеханического несоответствия» в зонах миокардиальной дисфункции.

При наличии хронической ишемии миокарда в условиях недостаточного обеспечения миокарда кислородом и дефицита макроэргических соедине-

ний возрастает ригидность его стенок, что, в свою очередь, приводит к замедлению процесса раннего диастолического расслабления левого желудочка. Негомогенность волны реполяризации и деполяризации миокарда, возникающая в зонах лимитированного коронарного кровоснабжения, создает условия для циркуляции волны возбуждения и развития угрожающих жизни нарушений ритма сердца, возрастания риска аритмогенной смерти.

Исследование убедительно показало наличие тесной корреляции между диастолической функцией левого желудочка и показателями, отражающими электрическое ремоделирование миокарда.

Список литературы

- 1. **Беленков, Ю. Н.** Хроническая сердечная недостаточность. Избранные лекции по кардиологии / Ю. Н. Беленков, В. Ю. Мареев, Ф. Т. Агеев. М. : ГЭОТАР-Медиа, 2006. С. 5–16.
- 2. **Wang, J.** Current perspectives on cardiac function in patients with diastolic heart failure / J. Wang, S. F. Nagueh // Circulation. 2009. Vol. 119. P. 1146–1157.
- 3. Left ventricular systolic and diastolic dyssynchrony in coronary artery disease with preserved ejection fraction / P. W. Lee, Q. Zhang, G. W. Yip et al. // Clin Sci (Lond). 2009. Vol. 116. P. 521–529.
- Trends in prevalence and outcome of heart failure with preserved ejection fraction / T. Owan, D. Hodge, R. Herges et al. // N. Engl. J. Med. – 2006. – Vol. 355. – P. 251– 259
- 5. Little, W.C. Echocardiographic evaluation of diastolic function can be used to guide clinical care / W. C. Little, J. K. Oh // Circulation. 2009. Vol. 120. P. 802–809.
- 6. **Мареев, В. Ю.** Хроническая сердечная недостаточность и инсулиннезависимый сахарный диабет: случайная связь или закономерность? / В. Ю. Мареев, Ю. Н. Беленков // Терапевтический архив. 2003. Vol. 75, № 10. Р. 5–10.
- 7. **Герасимова, А. С.** Артериальная гипертония, ассоциированная с метаболическим синдромом: особенности течения и поражения органов-мишеней (обзор литературы) / А. С. Герасимова, В. Э. Олейников // Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2008. Т. 3. Р. 88—101.
- 8. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению XCH (четвертый пересмотр) // Сердечная недостаточность. 2013. № 7 (81). С. 379—472.
- 9. Метаболизм миокарда при хронической сердечной недостаточности и современные возможности метаболической терапии / Е. В. Шляхто, М. М. Галагудза, Е. М. Нифонтов и др. // Сердечная недостаточность. 2005. № 4. Р. 148–155.
- 10. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology / W. J. Paulus, C. Tschoepe, J. E. Sanderson et al. // European Heart Journal. 2007. Vol. 28. P. 2539–2550.
- Myocardial Ischemia in Patients with Diastolic Dysfunction and Heart Failure / T. E. Vanhecke, R. Kim, S. Z. Raheem, P. A. McCullough // Curr. Cardiol. Rep. – 2010. – Vol. 12. – P. 216–222.
- Electrical Heart Instability Evaluation in Conditions of Diastolic Heart Failure Suffered by Coronary Heart Disease Patients. Novel Strategies in Ischemic Heart Disease / E. P. Tatarchenko, N. V. Pozdnyakova, O. E. Morozova, E. A. Petrushin; ed. by Umashankar Lakshmanadoss. – Croatia, 2012. – P. 81–98.
- 13. **Shah**, **R. R.** Drug-induced QT dispersion: Does it predict the risk of torsade de pointes? / R. R. Shah // J. Electrocardiol. 2005. Vol. 38, № 1. P. 10–18.

References

- 1. Belenkov Yu. N., Mareev V. Yu., Ageev F. T. *Khronicheskaya serdechnaya nedostato-chnost'. Izbrannye lektsii po kardiologii* [Chronic heart failure. Selected lectures on cardiology]. Moscow: GEOTAR-Media, 2006, pp. 5–16.
- 2. Wang J., Nagueh S. F. Circulation. 2009, vol. 119, pp. 1146–1157.
- 3. Lee P. W., Zhang Q., Yip G. W. et al. Clin Sci (Lond). 2009, vol. 116, pp. 521-529.
- 4. Owan T., Hodge D., Herges R. et al. N. Engl. J. Med. 2006, vol. 355, pp. 251–259.
- 5. Little W.C., Oh J. K. Circulation. 2009, vol. 120, pp. 802–809.
- 6. Mareev V. Yu., Belenkov Yu. N. *Terapevticheskiy arkhiv* [Therapeutic archive]. 2003, vol. 75, no. 10, pp. 5–10.
- 7. Gerasimova A. S., Oleynikov V. E. *Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Meditsinskie nauki* [University proceedings. Volga region. Medical sciences]. 2008, vol. 3, pp. 88–101.
- 8. Serdechnaya nedostatochnost' [Heart failure]. 2013, no. 7 (81), pp. 379–472.
- 9. Shlyakhto E. V., Galagudza M. M., Nifontov E. M. et al. *Serdechnaya nedostatochnost'* [Heart failure]. 2005, no. 4, pp. 148–155.
- 10. Paulus W. J., Tschoepe C., Sanderson J. E. et al. *European Heart Journal*. 2007, vol. 28, pp. 2539–2550.
- 11. Vanhecke T. E., Kim R., Raheem S. Z., McCullough P. A. Curr. Cardiol. Rep. 2010, vol. 12, pp. 216–222.
- 12. Tatarchenko E. P., Pozdnyakova N. V., Morozova O. E., Petrushin E. A. *Electrical Heart Instability Evaluation in Conditions of Diastolic Heart Failure Suffered by Coronary Heart Disease Patients. Novel Strategies in Ischemic Heart Disease.* Croatia, 2012, pp. 81–98.
- 13. Shah R. R. J. Electrocardiol. 2005, vol. 38, no. 1, pp. 10–18.

Татарченко Иван Порфирьевич

доктор медицинских наук, профессор, заведующий кафедрой терапии, кардиологии и функциональной диагностики, Пензенский институт усовершенствования врачей (Россия, г. Пенза, ул. Стасова, 8а)

E-mail: giuv@sura.ru

Денисова Алла Геннадьевна

кандидат медицинских наук, доцент, кафедра терапии, кардиологии и функциональной диагностики, декан терапевтического факультета, Пензенский институт усовершенствования врачей (Россия, г. Пенза, ул. Стасова, 8а); врач-эндокринолог, Медикосанитарная часть № 59 Федерального медико-биологического агенства (Россия, Пензенская область, г. Заречный, ул. Спортивная, 8)

E-mail: giuv@sura.ru

Tatarchenko Ivan Porfir'evich

Doctor of medical sciences, professor, head of sub-department of therapy, cardiology and functional diagnostics, Penza Institute of Advanced Medical Studies (8a Stasova street, Penza, Russia)

Denisova Alla Gennad'evna

Candidate of medical sciences, associate professor, sub-department of therapeutics, cardiology and functional diagnostics, dean of the Faculty of therapeutic, Penza Institute of Advanced Medical Studies (8a Stasova street, Penza, Russia); endocrinologist, Medical unit № 59 of the Federal biomedical agency (8 Sportivnaya street, Zarechny, Penza region, Russia)

Позднякова Надежда Викторовна

доктор медицинских наук, профессор, кафедра терапии, кардиологии и функциональной диагностики, Пензенский институт усовершенствования врачей (Россия, г. Пенза, ул. Стасова, 8а); главный терапевт, Медикосанитарная часть № 59 Федерального медико-биологического агенства (Россия, Пензенская область, г. Заречный, ул. Спортивная, 8)

E-mail: pozdnyakova-n-v@rambler.ru

Морозова Ольга Ивановна

доктор медицинских наук, профессор, кафедра терапии, кардиологии и функциональной диагностики, Пензенский институт усовершенствования врачей (Россия, г. Пенза, ул. Стасова, 8а)

E-mail: giuv@sura.ru

Pozdnyakova Nadezhda Viktorovna

Doctor of medical sciences, professor, sub-department of therapeutics, cardiology and functional diagnostics, Penza Institute of Advanced Medical Studies (8a Stasova street, Penza, Russia); chief therapeutist, Medical unit № 59 of the Federal biomedical agency (8 Sportivnaya street, Zarechny, Penza region, Russia)

Morozova Ol'ga Ivanovna

Doctor of medical sciences, professor, sub-department of therapeutics, cardiology and functional diagnostics, Penza Institute of Advanced Medical Studies (8a Stasova street, Penza, Russia)

УДК 616.12-008

Татарченко, И. П.

Электрическая нестабильность миокарда при диастолической сердечной недостаточности и нарушении углеводного обмена / И. П. Татарченко, А. Г. Денисова, Н. В. Позднякова, О. И. Морозова // Известия высших учебных заведений. Поволжский регион. Медицинские науки. — 2015. — N 1 (33). — С. 101—111.